K-Theory for Operator Algebras
暂无分享,去创建一个
I. Introduction To K-Theory.- 1. Survey of topological K-theory.- 2. Overview of operator K-theory.- II. Preliminaries.- 3. Local Banach algebras and inductive limits.- 4. Idempotents and equivalence.- III. K0-Theory and Order.- 5. Basi K0-theory.- 6. Order structure on K0.- 7. Theory of AF algebras.- IV. K1-Theory and Bott Periodicity.- 8. Higher K-groups.- 9. Bott Periodicity.- V. K-Theory of Crossed Products.- 10. The Pimsner-Voiculescu exact sequence and Connes' Thorn isomorphism.- 11. Equivariant K-theory.- VI. More Preliminaries.- 12. Multiplier algebras.- 13. Hilbert modules.- 14. Graded C*-algebras.- VII. Theory of Extensions.- 15. Basic theory of extensions.- 16. Brown-Douglas-Fillmore theory and other applications.- VIII. Kasparov's KK-Theory.- 17. Basic theory.- 18. Intersection product.- 19. Further structure in KK-theory.- 20. Equivariant KK-theory.- IX. Further Topics.- 21. Homology and cohomology theories on C*-algebras.- 22. Axiomatic K-theory.- 23. Universal coefficient theorems and Kunneth theorems.- 24. Survey of applications to geometry and topology.