The Small Octagons of Maximal Width

The paper answers an open problem introduced by Bezdek and Fodor (Arch. Math. 74:75–80, 2000). The width of any unit-diameter octagon is shown to be less than or equal to $$\frac{1}{4}\sqrt{10 + 2\sqrt{7}}$$ and there are infinitely many small octagons having this optimal width. The proof combines geometric and analytical reasoning as well as the use of a recent version of the deterministic and reliable global optimization code IBBA based on interval and affine arithmetics. The code guarantees a certified numerical accuracy of $$1\times 10^{-7}$$.

[1]  Charles Audet,et al.  Maximal perimeter, diameter and area of equilateral unit-width convex polygons , 2010, J. Glob. Optim..

[2]  J. Pál Ein Minimumproblem für Ovale , 1921 .

[3]  Jordan Ninin,et al.  Optimisation Globale basée sur l'Analyse d'Intervalles: Relaxation Affine et Limitation de la Mémoire. (Global Optimization based on Interval Analysis: Affine Relaxation and Limited Memory) , 2010 .

[4]  Nathalie Revol Standardized Interval Arithmetic and Interval Arithmetic Used in Libraries , 2010, ICMS.

[5]  Michael J. Mossinghoff Enumerating isodiametric and isoperimetric polygons , 2011, J. Comb. Theory, Ser. A.

[6]  Ronald L. Graham,et al.  The Largest Small Hexagon , 1975, J. Comb. Theory, Ser. A.

[7]  Pierre Hansen,et al.  Extremal problems for convex polygons , 2005, J. Glob. Optim..

[8]  Pierre Hansen,et al.  The minimum diameter octagon with unit-length sides: Vincze's wife's octagon is suboptimal , 2003, J. Comb. Theory, Ser. A.

[9]  Pierre Hansen,et al.  Isoperimetric Polygons of Maximum Width , 2009, Discret. Comput. Geom..

[10]  Ferenc Fodor,et al.  On convex polygons of maximal width , 2000 .

[11]  Arnold Neumaier,et al.  Safe bounds in linear and mixed-integer linear programming , 2004, Math. Program..

[12]  Jorge Stolfi,et al.  Affine Arithmetic: Concepts and Applications , 2004, Numerical Algorithms.

[13]  Pierre Hansen,et al.  The Largest Small Octagon , 2001, J. Comb. Theory, Ser. A.

[14]  Frédéric Messine,et al.  Deterministic global optimization using interval constraint propagation techniques , 2004, RAIRO Oper. Res..

[15]  Frédéric Messine,et al.  Extentions of Affine Arithmetic: Application to Unconstrained Global Optimization , 2002, J. Univers. Comput. Sci..

[16]  Frédéric Messine,et al.  A General Reliable Quadratic Form: An Extension of Affine Arithmetic , 2006, Reliab. Comput..

[17]  Pierre Hansen,et al.  The small octagon with longest perimeter , 2005, J. Comb. Theory, Ser. A.

[18]  Pierre Hansen,et al.  A reliable affine relaxation method for global optimization , 2010, 4OR.

[19]  Jordan Ninin,et al.  A metaheuristic methodology based on the limitation of the memory of interval branch and bound algorithms , 2011, J. Glob. Optim..

[20]  Pierre Hansen,et al.  Extremal Problems for Convex Polygons - An Update , 2007 .