Quantification of intracranial arterial blood flow using noncontrast enhanced 4D dynamic MR angiography

Noncontrast enhanced dynamic magnetic resonance angiography delineates the pattern of dynamic blood flow of the cerebral vasculature. A model‐free solution was proposed to quantify arterial blood flow (aBF) by using the monotonic property of the residual function.

[1]  Michael T. Lawton,et al.  Delayed Venous Drainage in Ruptured Arteriovenous Malformations Based on Quantitative Color-Coded Digital Subtraction Angiography. , 2017, World neurosurgery.

[2]  Peng Hu,et al.  Accelerated noncontrast‐enhanced 4‐dimensional intracranial MR angiography using golden‐angle stack‐of‐stars trajectory and compressed sensing with magnitude subtraction , 2018, Magnetic resonance in medicine.

[3]  Linda Knutsson,et al.  Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study. , 2004, Magnetic resonance imaging.

[4]  B. Rosen,et al.  Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix , 2003, Magnetic resonance in medicine.

[5]  Danny J. J. Wang,et al.  Quantification of arterial cerebral blood volume using multiphase‐balanced SSFP‐based ASL , 2012, Magnetic resonance in medicine.

[6]  Nader Pouratian,et al.  Noncontrast enhanced four‐dimensional dynamic MRA with golden angle radial acquisition and k‐space weighted image contrast (KWIC) reconstruction , 2014, Magnetic resonance in medicine.

[7]  Linda Knutsson,et al.  Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities , 2010, Magnetic Resonance Materials in Physics, Biology and Medicine.

[8]  K. Zierler,et al.  On the theory of the indicator-dilution method for measurement of blood flow and volume. , 1954, Journal of applied physiology.

[9]  C. Rasmussen,et al.  Perfusion quantification using Gaussian process deconvolution , 2002, Magnetic resonance in medicine.

[10]  Michael Bock,et al.  Arterial spin labeling in combination with a look‐locker sampling strategy: Inflow turbo‐sampling EPI‐FAIR (ITS‐FAIR) , 2001, Magnetic resonance in medicine.

[11]  M. Shinohara,et al.  Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. , 2001, Physics in medicine and biology.

[12]  R F Spetzler,et al.  A proposed grading system for arteriovenous malformations. , 1986, Journal of neurosurgery.

[13]  D. Gadian,et al.  Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value decomposition , 2000, Magnetic resonance in medicine.

[14]  Esben Thade Petersen,et al.  Model‐free arterial spin labeling quantification approach for perfusion MRI , 2006, Magnetic resonance in medicine.

[15]  Karla L Miller,et al.  Optimization of 4D vessel‐selective arterial spin labeling angiography using balanced steady‐state free precession and vessel‐encoding , 2016, NMR in biomedicine.

[16]  W. J. Lorenz,et al.  Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. , 1994, Radiology.

[17]  K. Scheffler,et al.  In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. , 2007, AJNR. American journal of neuroradiology.

[18]  M. Markl,et al.  Voxel‐by‐voxel 4D flow MRI‐based assessment of regional reverse flow in the aorta , 2018, Journal of magnetic resonance imaging : JMRI.

[19]  S. Amin-Hanjani,et al.  Relationship of Cerebral Arteriovenous Malformation Hemodynamics to Clinical Presentation, Angioarchitectural Features, and Hemorrhage. , 2016, Neurosurgery.

[20]  J. Fike,et al.  A deconvolution method for evaluating indicator-dilution curves. , 1994, Physics in medicine and biology.

[21]  Peter Schmitt,et al.  Non‐contrast‐enhanced four‐dimensional (4D) intracranial MR angiography: A feasibility study , 2010, Magnetic resonance in medicine.

[22]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[23]  K. B. Larson,et al.  Tracer-kinetic analysis for measuring regional cerebral blood flow by dynamic nuclear magnetic resonance imaging. , 1994, Journal of theoretical biology.

[24]  Karl J. Friston,et al.  Bayesian estimation of cerebral perfusion using a physiological model of microvasculature , 2006, NeuroImage.

[25]  A. Konstas,et al.  Clinical utility of quantitative magnetic resonance angiography in the assessment of the underlying pathophysiology in a variety of cerebrovascular disorders. , 2012, European journal of radiology.

[26]  M. Markl,et al.  Evaluation of 4D Vascular Flow and Tissue Perfusion in Cerebral Arteriovenous Malformations: Influence of Spetzler-Martin Grade, Clinical Presentation, and AVM Risk Factors , 2015, American Journal of Neuroradiology.

[27]  Danny J. J. Wang,et al.  Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. , 2010, Radiology.

[28]  D. Gadian,et al.  Quantification of bolus‐tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization , 2003, Magnetic resonance in medicine.

[29]  V. Gupta,et al.  Use of CT Angiography for Anatomic Localization of Arteriovenous Malformation Nidal Components , 2008, American Journal of Neuroradiology.

[30]  F Calamante,et al.  Minimising the effects of bolus dispersion in bolus‐tracking MRI , 2008, NMR in biomedicine.