Overlapping restricted additive Schwarz method with damping factor for H-matrix linear complementarity problem

Abstract In this paper, we consider an overlapping restricted additive Schwarz method (RAS) with damping factor for solving H + -matrix linear complementarity problem. Moreover, we estimate the weighted max-norm bounds for iteration errors and show that the sequence generated by the overlapping restricted additive Schwarz method (RAS) with damping factor converges to the unique solution of the problem without any restriction on the initial point. Finally, we establish monotone convergence of the proposed method under appropriate conditions.

[1]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[2]  J. Pang Necessary and sufficient conditions for the convergence of iterative methods for the linear complementarity problem , 1984 .

[3]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[4]  Li-Tao Zhang,et al.  The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems , 2014, Comput. Math. Appl..

[5]  R. Hoppe Multigrid Algorithms for Variational Inequalities , 1987 .

[6]  Zhong-Zhi Bai,et al.  On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem , 1999, SIAM J. Matrix Anal. Appl..

[7]  Li-Li Zhang,et al.  Modulus‐based synchronous multisplitting iteration methods for linear complementarity problems , 2013, Numer. Linear Algebra Appl..

[8]  Daniel B. Szyld,et al.  An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms , 2001, SIAM J. Numer. Anal..

[9]  Michele Benzi,et al.  Algebraic theory of multiplicative Schwarz methods , 2001, Numerische Mathematik.

[10]  Apostolos Hadjidimos,et al.  Nonstationary Extrapolated Modulus Algorithms for the solution of the Linear Complementarity Problem , 2009 .

[11]  Zhong-zhi,et al.  RELAXED ASYNCHRONOUS ITERATIONS FOR THE LINEAR COMPLEMENTARITY PROBLEM , 2002 .

[12]  P. Tseng,et al.  On the convergence of a matrix splitting algorithm for the symmetric monotone linear complementarity problem , 1991 .

[13]  Jinping Zeng,et al.  On Monotone and Geometric Convergence of Schwarz Methods for Two-Sided Obstacle Problems , 1998 .

[14]  Li-Li Zhang,et al.  Two-step modulus-based matrix splitting iteration method for linear complementarity problems , 2011, Numerical Algorithms.

[15]  Olof B. Widlund,et al.  To overlap or not to overlap: a note on a domain decomposition method for elliptic problems , 1989 .

[16]  Y. Saad,et al.  Overlapping Domain Decomposition Algorithms for General Sparse Matrices , 1996, Numer. Linear Algebra Appl..

[17]  Olof B. Widlund,et al.  Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic Problems , 2015 .

[18]  David J. Evans,et al.  Matrix Multisplitting Methods with Applications to Linear Complementarity Problems∶ Parallel Asynchronous Methods , 2002, Int. J. Comput. Math..

[19]  K.-H. Hoffmann,et al.  Parallel solution of variational inequality problems with nonlinear source terms , 1996 .

[20]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[21]  Alfredo N. Iusem On the convergence of iterative methods for symmetric linear complementarity problems , 1993, Math. Program..

[22]  Van Bokhoven Piecewise-linear modelling and analysis , 1981 .

[23]  D. Szyld,et al.  Overlapping additive and multiplicative Schwarz iterations for H -matrices , 2004 .

[24]  Zhong-Zhi Bai,et al.  On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem , 1998 .

[25]  F. Scarpini The alternating schwarz method applied to some biharmonic variational inequalities , 1990 .

[26]  M. Fukushima,et al.  Weighted max-norm estimate of additive Schwarz iteration scheme for solving linear complementarity problems , 2001 .

[27]  Li-Tao Zhang,et al.  The Weaker Convergence of Non-stationary Matrix Multisplitting Methods for Almost Linear Systems , 2011 .

[28]  G. Isac Complementarity Problems , 1992 .

[29]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[30]  O. Mangasarian Solution of symmetric linear complementarity problems by iterative methods , 1977 .

[31]  Li-Li Zhang,et al.  Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems , 2013, Appl. Math. Lett..

[32]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[33]  Daniel B. Szyld,et al.  Convergence Theory of Restricted Multiplicative Schwarz Methods , 2002, SIAM J. Numer. Anal..

[34]  P Tarvainen Two-level Schwarz method for unilateral variational inequalities , 1999 .

[35]  白中治 ON THE MONOTONE CONVERGENCE OF THE PROJECTED ITERATION METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS , 1996 .

[36]  Zhong-zhiBai,et al.  A CLASS OF ASYNCHRONOUS PARALLEL MULTISPLITTING RELAXATION METHODS FOR LARGE SPARSE LINEAR COMPLEMENTARITY PROBLEMS , 2003 .

[37]  Zhong-Zhi Bai,et al.  Chaotic iterative methods for the linear complementarity problems , 1998 .

[38]  Lori Badea On the Schwarz alternating method with more than two subdomains for nonlinear monotone problems , 1991 .

[39]  A. Toselli Domain Decomposition Methods , 2004 .

[40]  Li-Li Zhang,et al.  Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems , 2012, Numerical Algorithms.

[41]  Mei-Qun Jiang,et al.  A modified modulus method for symmetric positive‐definite linear complementarity problems , 2009, Numer. Linear Algebra Appl..

[42]  Wen Li,et al.  A general modulus-based matrix splitting method for linear complementarity problems of HH-matrices , 2013, Appl. Math. Lett..

[43]  Haijian Yang,et al.  A multiplicative Schwarz iteration scheme for solving the linear complementarity problem with an H-matrix , 2009 .

[44]  Xiao-Chuan Cai,et al.  Restricted Additive Schwarz Preconditioners with Harmonic Overlap for Symmetric Positive Definite Linear Systems , 2003, SIAM J. Numer. Anal..

[45]  David J. Evans,et al.  Matrix multisplitting relaxation methods for linear complementarity problems , 1997, Int. J. Comput. Math..

[46]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[47]  Li-Tao Zhang,et al.  Improved convergence theorems of multisplitting methods for the linear complementarity problem , 2014, Appl. Math. Comput..

[48]  Daniel B. Szyld,et al.  Weighted max norms, splittings, and overlapping additive Schwarz iterations , 1999, Numerische Mathematik.

[49]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[50]  Qingguo Li,et al.  Overlapping restricted additive Schwarz method applied to the linear complementarity problem with an H-matrix , 2012, Comput. Optim. Appl..

[51]  Zhong-Zhi Bai,et al.  Modulus‐based matrix splitting iteration methods for linear complementarity problems , 2010, Numer. Linear Algebra Appl..

[52]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[53]  Bai,et al.  A NEW GENERALIZED ASYNCHRONOUS PARALLEL MULTISPLITTING ITERATION METHOD , 1999 .

[54]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .