Generating intense electric fields in 2D materials by dual ionic gating

[1]  H. Ebert,et al.  Electric field control of magnons in magnetic thin films: Ab initio predictions for two-dimensional metallic heterostructures , 2022, Physical Review B.

[2]  A. Morpurgo,et al.  Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field , 2021, Nature Nanotechnology.

[3]  J. Shan,et al.  Dipolar excitonic insulator in a moiré lattice , 2021, Nature Physics.

[4]  J. Shan,et al.  Strongly correlated excitonic insulator in atomic double layers , 2021, Nature.

[5]  A. Morpurgo,et al.  Ionic gate spectroscopy of 2D semiconductors , 2021, Nature Reviews Physics.

[6]  I. Khan,et al.  Electric field induced giant valley polarization in two dimensional ferromagnetic WSe2/CrSnSe3 heterostructure , 2021, npj 2D Materials and Applications.

[7]  Sekhar Babu Mitta,et al.  Electrical characterization of 2D materials-based field-effect transistors , 2020, 2D Materials.

[8]  Songyou Wang,et al.  Electric Field-Tunable Structural Phase Transitions in Monolayer Tellurium , 2020, ACS omega.

[9]  M. Lanza,et al.  Insulators for 2D nanoelectronics: the gap to bridge , 2020, Nature Communications.

[10]  Dong Su Lee,et al.  Tuning the on/off current ratio in ionic-liquid gated multi-layer MoS2 field-effect transistors , 2020, Journal of Physics D: Applied Physics.

[11]  S. Mahapatra,et al.  Tuneable quantum spin Hall states in confined 1T' transition metal dichalcogenides , 2020, Scientific Reports.

[12]  Wan-Yu Tsai,et al.  On the Structure of the Electrical Double Layer at the Interface between an Ionic Liquid and Tungsten Oxide in Ion-Gated Transistors. , 2020, The journal of physical chemistry letters.

[13]  S. Fullerton‐Shirey,et al.  Electric-double-layer-gated transistors based on two-dimensional crystals: recent approaches and advances , 2020, Journal of Physics: Materials.

[14]  E. Reed,et al.  Reversible Electrochemical Phase Change in Monolayer to Bulk-Like MoTe2 by Ionic Liquid Gating. , 2019, ACS nano.

[15]  J. Maultzsch,et al.  Infrared Interlayer Exciton Emission in MoS_{2}/WSe_{2} Heterostructures. , 2019, Physical review letters.

[16]  J. Ye,et al.  Josephson coupled Ising pairing induced in suspended MoS2 bilayers by double-side ionic gating , 2019, Nature Nanotechnology.

[17]  A. Morpurgo,et al.  Band filling and cross quantum capacitance in ion gated semiconducting transition metal dichalcogenide monolayers. , 2019, Nano letters.

[18]  D. Saha,et al.  Realization of high quality silicon nitride deposition at low temperatures , 2019, Journal of Applied Physics.

[19]  W. Ge,et al.  The Inversion Symmetry Breaking Induced Valley Hall Effect in Multilayer WSe2. , 2019, ACS nano.

[20]  Jiawei Yan,et al.  In-situ STM and AFM Studies on Electrochemical Interfaces in imidazolium-based ionic liquids , 2019, Electrochimica Acta.

[21]  Christian Rodenbücher,et al.  Atomic Force Spectroscopy on Ionic Liquids , 2019, Applied Sciences.

[22]  Jianting Ye,et al.  Continuous Low‐Bias Switching of Superconductivity in a MoS2 Transistor , 2018, Advanced materials.

[23]  C. J. Li,et al.  Ambipolar ferromagnetism by electrostatic doping of a manganite , 2018, Nature Communications.

[24]  M. L. Van de Put,et al.  Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk , 2018, npj 2D Materials and Applications.

[25]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[26]  J. Shan,et al.  Electrical Tuning of Interlayer Exciton Gases in WSe2 Bilayers. , 2017, Nano letters.

[27]  Moon J. Kim,et al.  Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides , 2017 .

[28]  Lin Zhu,et al.  GaN MOSHEMT employing HfO2 as a gate dielectric with partially etched barrier , 2017 .

[29]  Ming Liu,et al.  Quantitative Determination on Ionic‐Liquid‐Gating Control of Interfacial Magnetism , 2017, Advanced materials.

[30]  Sangeeta Sharma,et al.  An anomalous interlayer exciton in MoS2 , 2016, Scientific Reports.

[31]  Sergei V. Kalinin,et al.  Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy , 2016, Scientific Reports.

[32]  Bo Zhang,et al.  Investigation of the interface between LPCVD-SiNx gate dielectric and III-nitride for AlGaN/GaN MIS-HEMTs , 2016 .

[33]  Kenji Watanabe,et al.  Anisotropic Dielectric Breakdown Strength of Single Crystal Hexagonal Boron Nitride. , 2016, ACS applied materials & interfaces.

[34]  J. Tersoff,et al.  Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction , 2015, Nature Communications.

[35]  Gerhard Klimeck,et al.  Electrically Tunable Bandgaps in Bilayer MoS₂. , 2015, Nano letters.

[36]  J. Miyazaki,et al.  Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating , 2015, Scientific Reports.

[37]  C. N. Lau,et al.  Ionic Liquid Gating of Suspended MoS2 Field Effect Transistor Devices. , 2015, Nano letters.

[38]  H. J. Liu,et al.  Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy , 2015, 1506.04460.

[39]  Caiyun Zhai,et al.  Bandstructure modulation of two-dimensional WSe2 by electric field , 2015 .

[40]  Kenji Watanabe,et al.  Supplemental note : Layer-by-Layer Dielectric Breakdown of Hexagonal Boron Nitride , 2015 .

[41]  Adalberto Fazzio,et al.  Switching a normal insulator into a topological insulator via electric field with application to phosphorene. , 2015, Nano letters.

[42]  H. Schmidt,et al.  Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors , 2014, Scientific Reports.

[43]  A. Goldman Electrostatic Gating of Ultrathin Films , 2014 .

[44]  T. Heine,et al.  Transition-metal dichalcogenide bilayers: Switching materials for spintronic and valleytronic applications , 2014, 1406.5012.

[45]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[46]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[47]  佐伯洋昌 Field effect transistor , 2012 .

[48]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[49]  Matthew K. Tam,et al.  Double Layer Structure of Ionic Liquids at the Au(111) Electrode Interface: An Atomic Force Microscopy Investigation , 2011 .

[50]  A. Morpurgo,et al.  Accessing the transport properties of graphene and its multilayers at high carrier density , 2010, Proceedings of the National Academy of Sciences.

[51]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[52]  J. Shan,et al.  Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. , 2009, Physical review letters.

[53]  S. Baldelli,et al.  Surface structure at the ionic liquid-electrified metal interface. , 2008, Accounts of chemical research.

[54]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[55]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[56]  K. Takagi,et al.  Electrochemical properties of novel ionic liquids for electric double layer capacitor applications , 2004 .

[57]  M. Heyns,et al.  Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy , 1993 .