Synthesis, spectroscopy, effective chiral information transfer and semiconducting property of optically active porphyrin derivative bearing four chiral binaphthyl moieties

[1]  Xiaohong Xu,et al.  Synthesis, circular dichroism, and third-order nonlinear optical properties of optically active porphyrin derivatives bearing four chiral citronellal moieties , 2012 .

[2]  Jianzhuang Jiang,et al.  Optically active mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes. Synthesis, spectroscopy, and effective chiral information transfer. , 2011, Inorganic chemistry.

[3]  Jianzhuang Jiang,et al.  Helical Nanostructures of an Optically Active Metal‐Free Porphyrin with Four Optically Active Binaphthyl Moieties: Effect of Metal–Ligand Coordination on the Morphology , 2010 .

[4]  R. Paolesse,et al.  Supramolecular chirality in solvent-promoted aggregation of amphiphilic porphyrin derivatives: kinetic studies and comparison between solution behavior and solid-state morphology by AFM topography. , 2010, Chemistry.

[5]  Wei Lv,et al.  Optically active mixed phthalocyaninato-porphyrinato rare-earth double-decker complexes: synthesis, spectroscopy, and solvent-dependent molecular conformations. , 2008, Chemistry.

[6]  T. Shi,et al.  Prepared chiral nanorods of a cobalt(II) porphyrin dimer and studied changes of UV-Vis and CD spectra with aggregate morphologies under different temperatures. , 2007, Inorganic chemistry.

[7]  P. Štěpánek,et al.  Synthesis and solvent driven self-aggregation studies of meso-"C-glycoside"-porphyrin derivatives. , 2007, Organic & biomolecular chemistry.

[8]  R. Fairman,et al.  Self-assembly of peptide porphyrin complexes: toward the development of smart biomaterials. , 2006, Journal of the American Chemical Society.

[9]  Andrea E. Holmes,et al.  Synthesis and circular dichroism of tetraarylporphyrin-oligonucleotide conjugates. , 2005, Journal of the American Chemical Society.

[10]  J. Parquette,et al.  Dendrimer folding in aqueous media: an example of solvent-mediated chirality switching. , 2005, Angewandte Chemie.

[11]  T. Aida,et al.  Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. , 2004, Angewandte Chemie.

[12]  B. Armitage,et al.  DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization. , 2004, Accounts of chemical research.

[13]  E. Yashima,et al.  Optically Active Polymers with Chiral Recognition Ability , 2004 .

[14]  K. Nakanishi,et al.  Magnesium tetraarylporphyrin tweezer: a CD-sensitive host for absolute configurational assignments of alpha-chiral carboxylic acids. , 2003, Journal of the American Chemical Society.

[15]  Xiaodong Chen,et al.  Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. , 2003, Journal of inorganic biochemistry.

[16]  Y. Inoue,et al.  Remarkable stability and enhanced optical activity of a chiral supramolecular bis-porphyrin tweezer in both solution and solid state. , 2002, Journal of the American Chemical Society.

[17]  B. Armitage,et al.  Helical Aggregation of Cyanine Dyes on DNA Templates: Effect of Dye Structure on Formation of Homo- and Heteroaggregates , 2002 .

[18]  S. Tamaru,et al.  A porphyrin-based gelator assembly which is reinforced by peripheral urea groups and chirally twisted by chiral urea additives , 2002 .

[19]  S. Tamaru,et al.  Sol–Gel Transcription of Sugar-Appended Porphyrin Assemblies into Fibrous Silica: Unimolecular Stacks versus Helical Bundles as Templates , 2002 .

[20]  S. Tamaru,et al.  Rational design of a sugar-appended porphyrin gelator that is forced to assemble into a one-dimensional aggregate. , 2001, Organic letters.

[21]  F. Xi,et al.  Synthesis and properties of optically active 6,6′-didodecyl-1,1′-binaphthyl-phthalocyanine linked through crown ether units , 2001 .

[22]  X. Huang,et al.  Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 1. Chiroptical protocol for absolute configurational assignments of monoalcohols and primary monoamines. , 2001, Journal of the American Chemical Society.

[23]  N. Nesnas,et al.  Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 2. Structural studies of host-guest complexes with chiral alcohol and monoamine conjugates. , 2001, Journal of the American Chemical Society.

[24]  D. Abeln,et al.  Crystal structure analysis and chiral recognition study of Delta-[Ru(bpy)2(py)2][(+)-O,O'-dibenzoylD-tartrate].12H2O and Lambda-[Ru(bpy)2(py)2][(-)-O,O'-dibenzoyl-L-tartrate].12H2O. , 2001, Inorganic chemistry.

[25]  A. Gong,et al.  Synthesis of optically active 1,1′-binaphthyl-phthalocyanines linked via a crown ether unit , 2000 .

[26]  Miaomiao Wang,et al.  DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate , 2000 .

[27]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[28]  Y. Inoue,et al.  Temperature Effect on Supramolecular Chirality Induction in Bis(zinc porphyrin) , 2000 .

[29]  Wenbin Lin,et al.  A Novel Octupolar Metal−Organic NLO Material Based on a Chiral 2D Coordination Network , 1999 .

[30]  Ehud Keinan,et al.  ANTIBODY-METALLOPORPHYRIN CATALYTIC ASSEMBLY MIMICS NATURAL OXIDATION ENZYMES , 1999 .

[31]  Jurriaan Huskens,et al.  Complete asymmetric chirality in a hydrogen-bonded assembly , 1999 .

[32]  A. Persoons,et al.  Enhancement of nonlinear optical properties through supramolecular chirality , 1998, Nonlinear Optics '98. Materials, Fundamentals and Applications Topical Meeting (Cat. No.98CH36244).

[33]  K. Nakanishi,et al.  Zinc Porphyrin Tweezer in Host−Guest Complexation: Determination of Absolute Configurations of Diamines, Amino Acids, and Amino Alcohols by Circular Dichroism , 1998 .

[34]  H. Ogoshi,et al.  Multifunctional and Chiral Porphyrins: Model Receptors for Chiral Recognition , 1998 .

[35]  S. Shinkai,et al.  Sugar-Controlled Aggregate Formation in Boronic Acid-Appended Porphyrin Amphiphiles , 1996 .

[36]  C. Boettcher,et al.  Chiral micellar porphyrin fibers with 2-aminoglycosamide head groups , 1992 .

[37]  E. Gibbs,et al.  Self-Assembly Of Porphyrins On Nucleic Acids And Polypeptides , 1991 .

[38]  W. Lipscomb Structure and mechanism in the enzymic activity of carboxypeptidase A and relations to chemical sequence , 1970 .

[39]  R. Nolte,et al.  Supramolecular porphyrin polymers in solution and at the solid-liquid interface. , 2008, Nano letters.

[40]  Yoshihisa Inoue,et al.  Chirality-sensing supramolecular systems. , 2008, Chemical reviews.

[41]  S. Shinkai,et al.  Intermolecular porphyrin-fullerene interaction can reinforce the organogel structure of a porphyrin-appended cholesterol derivative , 2000 .

[42]  X. Huang,et al.  Porphyrins and metalloporphyrins: versatile circular dichroic reporter groups for structural studies. , 2000, Chirality.

[43]  H. Mihara,et al.  Construction of α-helical peptide dendrimers conjugated with multi- metalloporphyrins: photoinduced electron transfer on dendrimer architecture , 2000 .

[44]  L. Pu,et al.  THE FIRST OPTICALLY ACTIVE AND STERICALLY REGULAR POLY(1,1'-BI-2-NAPHTHOL)S : PRECURSORS TO A NEW GENERATION OF POLYMERIC CATALYSTS , 1996 .

[45]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .