Coordinate sampler: a non-reversible Gibbs-like MCMC sampler

We derive a novel non-reversible, continuous-time Markov chain Monte Carlo sampler, called Coordinate Sampler, based on a piecewise deterministic Markov process, which is a variant of the Zigzag sampler of Bierkens et al. (Ann Stat 47(3):1288–1320, 2019). In addition to providing a theoretical validation for this new simulation algorithm, we show that the Markov chain it induces exhibits geometrical ergodicity convergence, for distributions whose tails decay at least as fast as an exponential distribution and at most as fast as a Gaussian distribution. Several numerical examples highlight that our coordinate sampler is more efficient than the Zigzag sampler, in terms of effective sample size.

[1]  A. Doucet,et al.  Piecewise-Deterministic Markov Chain Monte Carlo , 2017, 1707.05296.

[2]  G. Shedler,et al.  Simulation of Nonhomogeneous Poisson Processes by Thinning , 1979 .

[3]  A. Doucet,et al.  Exponential ergodicity of the bouncy particle sampler , 2017, The Annals of Statistics.

[4]  Paul Fearnhead,et al.  Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo , 2016, Statistical Science.

[5]  S. Sénécal,et al.  Forward Event-Chain Monte Carlo: a general rejection-free and irreversible Markov chain simulation method , 2017 .

[6]  Werner Krauth,et al.  Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. , 2013, The Journal of chemical physics.

[7]  Florent Malrieu,et al.  Long time behavior of telegraph processes under convex potentials , 2015, 1507.03503.

[8]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[9]  Mark H. Davis Markov Models and Optimization , 1995 .

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  Jan Kierfeld,et al.  Event-chain Monte Carlo algorithms for three- and many-particle interactions , 2016, 1611.09098.

[12]  C. Sherlock,et al.  A discrete bouncy particle sampler , 2017, Biometrika.

[13]  M.H.A. Davis,et al.  Markov Models & Optimization , 1993 .

[14]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[15]  A. Doucet,et al.  The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.

[16]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[17]  S. Meyn,et al.  Exponential and Uniform Ergodicity of Markov Processes , 1995 .

[18]  P. Glynn,et al.  Laws of Large Numbers and Functional Central Limit Theorems for Generalized Semi-Markov Processes , 2006 .

[19]  E A J F Peters,et al.  Rejection-free Monte Carlo sampling for general potentials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[21]  Alain Durmus,et al.  Forward Event-Chain Monte Carlo: Fast Sampling by Randomness Control in Irreversible Markov Chains , 2017, Journal of Computational and Graphical Statistics.

[22]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[23]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[24]  Nicholas Galbraith On Event-Chain Monte Carlo Methods , 2016 .

[25]  David E. Carlson,et al.  Stochastic Bouncy Particle Sampler , 2016, ICML.

[26]  P. Fearnhead,et al.  Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains , 2017, 1701.04244.

[27]  P. Fearnhead,et al.  The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.

[28]  G. Roberts,et al.  A piecewise deterministic scaling limit of Lifted Metropolis-Hastings in the Curie-Weiss model , 2015, 1509.00302.