Cosmic birefringence as a probe of the nature of dark matter: Sterile neutrino and dipolar dark matter

Recently, non-zero rotation angle $\beta=0.30^\circ\pm0.11^\circ$ $(68\%\text{ C.L.})$ [Phys. Rev. Lett. \textbf{128}, no.9, 091302 (2022)] has been reported for linear polarization of cosmic microwave background (CMB) radiation, which is known as cosmic birefringence (CB). We used this birefringence angle of CMB to study and distinguish different candidates of dark matter (DM), e.g., dipolar and sterile neutrino DM. We calculated CMB forward scattering by those probable candidates of DM to generate $\beta$ in the presence of primordial scalar fluctuations' background. We explicitly plotted bounds on the mass and electromagnetic coupling for different sectors of DM, sterile neutrino, and dipolar DM, and compared them with other experimental bounds. Regarding dipolar DM, our calculations put a bound on the Majorana magnetic dipole moment about $\mathcal{M}\leqslant 1.4\times10^{-14}\,\frac{\beta}{0.30^\circ}\sqrt{\frac{m_{\text{\tiny{DM}}}}{1\,GeV}}\, e.\text{\,cm}$. In the case of sterile neutrino DM, the bound on the mass and mixing angle was estimated at $\theta^2 \leqslant 3.3\,(rad)^2\frac{\beta}{0.30^\circ}\,\frac{m_{DM}}{\rm{KeV}} $, which can be a new constraint for sterile neutrino DM whose production mechanism is motivated by models with a hidden sector coupled to the sterile neutrino. Based on our results, if the constraint on the mass and the electromagnetic coupling for DM must be within the allowed region, none of the considered candidates can compensate for all the observed CB angles. We also discussed the maximum contribution of the CB angle via CMB forward scattering by different sectors of the dark matter.

[1]  S. Movahed,et al.  CMB polarization by the asymmetric template of scalar perturbations , 2023, The European Physical Journal C.

[2]  R. Sullivan,et al.  Constraints on cosmic birefringence using E-mode polarisation , 2022, Journal of Cosmology and Astroparticle Physics.

[3]  Ippei Obata,et al.  Cosmic birefringence from monodromic axion dark energy , 2022, Journal of Cosmology and Astroparticle Physics.

[4]  E. Komatsu New physics from the polarized light of the cosmic microwave background , 2022, Nature Reviews Physics.

[5]  R. B. Barreiro,et al.  Cosmic Birefringence from the Planck Data Release 4. , 2022, Physical review letters.

[6]  J. Cooley Dark Matter Direct Detection of Classical WIMPs , 2021, 2110.02359.

[7]  A. Green Dark matter in astrophysics/cosmology , 2021, SciPost Physics Lecture Notes.

[8]  T. Slatyer Les Houches Lectures on Indirect Detection of Dark Matter , 2021, SciPost Physics Lecture Notes.

[9]  S. Xue,et al.  Cross-correlation power spectra and cosmic birefringence of the CMB via photon-neutrino interaction , 2021, Journal of Cosmology and Astroparticle Physics.

[10]  R. B. Barreiro,et al.  Planck 2018 results , 2021, Astronomy & Astrophysics.

[11]  S. Tsujikawa,et al.  Detection of isotropic cosmic birefringence and its implications for axionlike particles including dark energy , 2020, Physical Review D.

[12]  E. Komatsu,et al.  New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. , 2020, Physical review letters.

[13]  O. Seto,et al.  Signal from sterile neutrino dark matter in extra U(1) model at direct detection experiment , 2020, 2007.14605.

[14]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz , 2020, Journal of Cosmology and Astroparticle Physics.

[15]  Eiichiro Komatsu,et al.  Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles II: Including cross-frequency spectra , 2020, 2006.15982.

[16]  Edward J. Wollack,et al.  Atacama Cosmology Telescope: Constraints on cosmic birefringence , 2020, Physical Review D.

[17]  A. Hook,et al.  A CMB Millikan experiment with cosmic axiverse strings , 2019, Journal of High Energy Physics.

[18]  M. Haghighat,et al.  Impact of the vector dark matter on polarization of the CMB photon , 2019, Physical Review D.

[19]  S. Tizchang,et al.  Circular polarization of cosmic photons due to their interactions with sterile neutrino dark matter , 2019, Physical Review D.

[20]  M. Sadegh,et al.  B-mode power spectrum of CMB via polarized Compton scattering , 2019, Journal of Cosmology and Astroparticle Physics.

[21]  F. Hofmann,et al.  7.1 keV sterile neutrino dark matter constraints from a deep Chandra X-ray observation of the Galactic bulge Limiting Window , 2019, Astronomy & Astrophysics.

[22]  M. Fedderke,et al.  Axion dark matter detection with CMB polarization , 2019, Physical Review D.

[23]  R. Catena,et al.  Direct detection of fermionic and vector dark matter with polarised targets , 2018, Journal of Cosmology and Astroparticle Physics.

[24]  A. Boyarsky,et al.  Sterile neutrino Dark Matter , 2018, Progress in Particle and Nuclear Physics.

[25]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[26]  M. Haghighat,et al.  Dipolar dark matter and CMB B-mode polarization , 2018, The European Physical Journal C.

[27]  D. Marsh,et al.  Black hole spin constraints on the mass spectrum and number of axionlike fields , 2018, Physical Review D.

[28]  V. Cardoso,et al.  Constraining the mass of dark photons and axion-like particles through black-hole superradiance , 2018, 1801.01420.

[29]  Tong Li,et al.  Lepton Number Violation: Seesaw Models and Their Collider Tests , 2017, Front. Phys..

[30]  D. Gorbunov,et al.  Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology , 2017, 1705.02184.

[31]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[32]  J. Beacom,et al.  Almost closing the νMSM sterile neutrino dark matter window with NuSTAR , 2016, 1609.00667.

[33]  A. Biswas,et al.  Freeze-in production of sterile neutrino dark matter in U(1)B−L model , 2016, 1607.01469.

[34]  Zhaofeng Kang,et al.  Right-handed neutrino dark matter under the B − L gauge interaction , 2016, 1606.09317.

[35]  S. Tizchang,et al.  Cosmic microwave background polarization in non-commutative space-time , 2016, The European Physical Journal C.

[36]  S. Xue Hierarchy spectrum of SM fermions: from top quark to electron neutrino , 2016, 1605.01266.

[37]  S. Xue,et al.  B-mode polarization of the CMB and the cosmic neutrino background , 2016, 1602.00237.

[38]  J. Smirnov,et al.  Scalar dark matter: direct vs. indirect detection , 2015, 1509.04282.

[39]  D. Marfatia,et al.  Vector dark matter at the LHC , 2015, 1508.04466.

[40]  S. Xue Vectorlike W ± -boson coupling at TeV and third family fermion masses , 2015, 1506.05994.

[41]  A. Arvanitaki,et al.  Discovering the QCD Axion with Black Holes and Gravitational Waves , 2014, 1411.2263.

[42]  F. Takahashi,et al.  Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line , 2014, 1408.3936.

[43]  C. Chiang,et al.  3.5 keV X-ray line from nearly-degenerate WIMP dark matter decays , 2014, 1407.0460.

[44]  S. Xue,et al.  Photon-neutrino scattering and the B-mode spectrum of CMB photons , 2014, 1406.6213.

[45]  Hyun Min Lee,et al.  Magnetic dark matter for the X-ray line at 3.55 keV , 2014, 1404.5446.

[46]  A. Drlica-Wagner,et al.  Working Group Report: WIMP Dark Matter Indirect Detection , 2013 .

[47]  P. Graham,et al.  New Observables for Direct Detection of Axion Dark Matter , 2013, 1306.6088.

[48]  H. Baer,et al.  Natural supersymmetry: LHC, dark matter and ILC searches , 2012, 1203.5539.

[49]  C. Arguelles,et al.  Sterile neutrinos and indirect dark matter searches in IceCube , 2012, 1202.3431.

[50]  A. Ringwald,et al.  WISPy cold dark matter , 2012, 1201.5902.

[51]  Javier Redondo,et al.  Cosmological bounds on pseudo Nambu-Goldstone bosons , 2011, 1110.2895.

[52]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[53]  S. Mohanty,et al.  Dipolar dark matter , 2009, 0906.1979.

[54]  J. Lesgourgues,et al.  Lyman-alpha constraints on warm and on warm-plus-cold dark matter models , 2008, 0812.0010.

[55]  C. Skordis,et al.  Pseudoscalar perturbations and polarization of the cosmic microwave background. , 2008, Physical review letters.

[56]  S. Khalil,et al.  Sterile neutrino dark matter in B–L extension of the standard model and galactic 511 keV line , 2008, 0804.0336.

[57]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[58]  A. Boyarsky,et al.  Constraints on decaying Dark Matter from XMM-Newton observations of M31 , 2007, 0709.2301.

[59]  J. Beacom,et al.  Strong upper limits on sterile neutrino warm dark matter. , 2007, Physical review letters.

[60]  A. Boyarsky,et al.  Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor , 2006, astro-ph/0610961.

[61]  A. Kusenko Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.

[62]  Seokcheon Lee,et al.  Effect on cosmic microwave background polarization of coupling of quintessence to pseudoscalar formed from the electromagnetic field and its dual. , 2006, Physical review letters.

[63]  M. Shaposhnikov,et al.  The nuMSM, inflation, and dark matter , 2006, hep-ph/0604236.

[64]  H. Trac,et al.  Can sterile neutrinos be the dark matter? , 2006, Physical review letters.

[65]  J. Bartlett Cosmic microwave background polarization , 2006, astro-ph/0601576.

[66]  A. Boyarsky,et al.  Constraints on sterile neutrinos as dark matter candidates from the diffuse X-ray background , 2005, astro-ph/0512509.

[67]  M. Gorbahn,et al.  From transition magnetic moments to Majorana neutrino masses , 2005, hep-ph/0506085.

[68]  J. García-Bellido,et al.  Modern Cosmology , 2004, hep-ph/0407111.

[69]  M. Kamionkowski,et al.  Dark-matter electric and magnetic dipole moments , 2004, astro-ph/0406355.

[70]  S. Hannestad Neutrinos in cosmology , 2004, hep-ph/0404239.

[71]  U. Florida,et al.  Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.

[72]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[73]  S. Burles,et al.  SHARPENING THE PREDICTIONS OF BIG-BANG NUCLEOSYNTHESIS , 1999, astro-ph/9901157.

[74]  M. Kamionkowski,et al.  Cosmological signature of new parity violating interactions , 1998, astro-ph/9812088.

[75]  G. Fuller,et al.  New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.

[76]  S. Xue NEUTRINO MASSES AND MIXINGS , 1997, hep-ph/9706301.

[77]  S. Xue Quark masses and mixing angles , 1996, hep-ph/9610508.

[78]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[79]  Widrow,et al.  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[80]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[81]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[82]  M. S. Roberts,et al.  The rotation curve and geometry of M31 at large galactocentric distances. , 1975 .

[83]  R. B. Barreiro,et al.  Planck 2015 results Special feature Planck 2015 results II . Low Frequency Instrument data processings , 2018 .