Cosmic birefringence as a probe of the nature of dark matter: Sterile neutrino and dipolar dark matter
暂无分享,去创建一个
[1] S. Movahed,et al. CMB polarization by the asymmetric template of scalar perturbations , 2023, The European Physical Journal C.
[2] R. Sullivan,et al. Constraints on cosmic birefringence using E-mode polarisation , 2022, Journal of Cosmology and Astroparticle Physics.
[3] Ippei Obata,et al. Cosmic birefringence from monodromic axion dark energy , 2022, Journal of Cosmology and Astroparticle Physics.
[4] E. Komatsu. New physics from the polarized light of the cosmic microwave background , 2022, Nature Reviews Physics.
[5] R. B. Barreiro,et al. Cosmic Birefringence from the Planck Data Release 4. , 2022, Physical review letters.
[6] J. Cooley. Dark Matter Direct Detection of Classical WIMPs , 2021, 2110.02359.
[7] A. Green. Dark matter in astrophysics/cosmology , 2021, SciPost Physics Lecture Notes.
[8] T. Slatyer. Les Houches Lectures on Indirect Detection of Dark Matter , 2021, SciPost Physics Lecture Notes.
[9] S. Xue,et al. Cross-correlation power spectra and cosmic birefringence of the CMB via photon-neutrino interaction , 2021, Journal of Cosmology and Astroparticle Physics.
[10] R. B. Barreiro,et al. Planck 2018 results , 2021, Astronomy & Astrophysics.
[11] S. Tsujikawa,et al. Detection of isotropic cosmic birefringence and its implications for axionlike particles including dark energy , 2020, Physical Review D.
[12] E. Komatsu,et al. New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. , 2020, Physical review letters.
[13] O. Seto,et al. Signal from sterile neutrino dark matter in extra U(1) model at direct detection experiment , 2020, 2007.14605.
[14] Edward J. Wollack,et al. The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz , 2020, Journal of Cosmology and Astroparticle Physics.
[15] Eiichiro Komatsu,et al. Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles II: Including cross-frequency spectra , 2020, 2006.15982.
[16] Edward J. Wollack,et al. Atacama Cosmology Telescope: Constraints on cosmic birefringence , 2020, Physical Review D.
[17] A. Hook,et al. A CMB Millikan experiment with cosmic axiverse strings , 2019, Journal of High Energy Physics.
[18] M. Haghighat,et al. Impact of the vector dark matter on polarization of the CMB photon , 2019, Physical Review D.
[19] S. Tizchang,et al. Circular polarization of cosmic photons due to their interactions with sterile neutrino dark matter , 2019, Physical Review D.
[20] M. Sadegh,et al. B-mode power spectrum of CMB via polarized Compton scattering , 2019, Journal of Cosmology and Astroparticle Physics.
[21] F. Hofmann,et al. 7.1 keV sterile neutrino dark matter constraints from a deep Chandra X-ray observation of the Galactic bulge Limiting Window , 2019, Astronomy & Astrophysics.
[22] M. Fedderke,et al. Axion dark matter detection with CMB polarization , 2019, Physical Review D.
[23] R. Catena,et al. Direct detection of fermionic and vector dark matter with polarised targets , 2018, Journal of Cosmology and Astroparticle Physics.
[24] A. Boyarsky,et al. Sterile neutrino Dark Matter , 2018, Progress in Particle and Nuclear Physics.
[25] J. Aumont,et al. Planck2018 results , 2018, Astronomy & Astrophysics.
[26] M. Haghighat,et al. Dipolar dark matter and CMB B-mode polarization , 2018, The European Physical Journal C.
[27] D. Marsh,et al. Black hole spin constraints on the mass spectrum and number of axionlike fields , 2018, Physical Review D.
[28] V. Cardoso,et al. Constraining the mass of dark photons and axion-like particles through black-hole superradiance , 2018, 1801.01420.
[29] Tong Li,et al. Lepton Number Violation: Seesaw Models and Their Collider Tests , 2017, Front. Phys..
[30] D. Gorbunov,et al. Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology , 2017, 1705.02184.
[31] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[32] J. Beacom,et al. Almost closing the νMSM sterile neutrino dark matter window with NuSTAR , 2016, 1609.00667.
[33] A. Biswas,et al. Freeze-in production of sterile neutrino dark matter in U(1)B−L model , 2016, 1607.01469.
[34] Zhaofeng Kang,et al. Right-handed neutrino dark matter under the B − L gauge interaction , 2016, 1606.09317.
[35] S. Tizchang,et al. Cosmic microwave background polarization in non-commutative space-time , 2016, The European Physical Journal C.
[36] S. Xue. Hierarchy spectrum of SM fermions: from top quark to electron neutrino , 2016, 1605.01266.
[37] S. Xue,et al. B-mode polarization of the CMB and the cosmic neutrino background , 2016, 1602.00237.
[38] J. Smirnov,et al. Scalar dark matter: direct vs. indirect detection , 2015, 1509.04282.
[39] D. Marfatia,et al. Vector dark matter at the LHC , 2015, 1508.04466.
[40] S. Xue. Vectorlike W ± -boson coupling at TeV and third family fermion masses , 2015, 1506.05994.
[41] A. Arvanitaki,et al. Discovering the QCD Axion with Black Holes and Gravitational Waves , 2014, 1411.2263.
[42] F. Takahashi,et al. Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line , 2014, 1408.3936.
[43] C. Chiang,et al. 3.5 keV X-ray line from nearly-degenerate WIMP dark matter decays , 2014, 1407.0460.
[44] S. Xue,et al. Photon-neutrino scattering and the B-mode spectrum of CMB photons , 2014, 1406.6213.
[45] Hyun Min Lee,et al. Magnetic dark matter for the X-ray line at 3.55 keV , 2014, 1404.5446.
[46] A. Drlica-Wagner,et al. Working Group Report: WIMP Dark Matter Indirect Detection , 2013 .
[47] P. Graham,et al. New Observables for Direct Detection of Axion Dark Matter , 2013, 1306.6088.
[48] H. Baer,et al. Natural supersymmetry: LHC, dark matter and ILC searches , 2012, 1203.5539.
[49] C. Arguelles,et al. Sterile neutrinos and indirect dark matter searches in IceCube , 2012, 1202.3431.
[50] A. Ringwald,et al. WISPy cold dark matter , 2012, 1201.5902.
[51] Javier Redondo,et al. Cosmological bounds on pseudo Nambu-Goldstone bosons , 2011, 1110.2895.
[52] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.
[53] S. Mohanty,et al. Dipolar dark matter , 2009, 0906.1979.
[54] J. Lesgourgues,et al. Lyman-alpha constraints on warm and on warm-plus-cold dark matter models , 2008, 0812.0010.
[55] C. Skordis,et al. Pseudoscalar perturbations and polarization of the cosmic microwave background. , 2008, Physical review letters.
[56] S. Khalil,et al. Sterile neutrino dark matter in B–L extension of the standard model and galactic 511 keV line , 2008, 0804.0336.
[57] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[58] A. Boyarsky,et al. Constraints on decaying Dark Matter from XMM-Newton observations of M31 , 2007, 0709.2301.
[59] J. Beacom,et al. Strong upper limits on sterile neutrino warm dark matter. , 2007, Physical review letters.
[60] A. Boyarsky,et al. Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor , 2006, astro-ph/0610961.
[61] A. Kusenko. Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.
[62] Seokcheon Lee,et al. Effect on cosmic microwave background polarization of coupling of quintessence to pseudoscalar formed from the electromagnetic field and its dual. , 2006, Physical review letters.
[63] M. Shaposhnikov,et al. The nuMSM, inflation, and dark matter , 2006, hep-ph/0604236.
[64] H. Trac,et al. Can sterile neutrinos be the dark matter? , 2006, Physical review letters.
[65] J. Bartlett. Cosmic microwave background polarization , 2006, astro-ph/0601576.
[66] A. Boyarsky,et al. Constraints on sterile neutrinos as dark matter candidates from the diffuse X-ray background , 2005, astro-ph/0512509.
[67] M. Gorbahn,et al. From transition magnetic moments to Majorana neutrino masses , 2005, hep-ph/0506085.
[68] J. García-Bellido,et al. Modern Cosmology , 2004, hep-ph/0407111.
[69] M. Kamionkowski,et al. Dark-matter electric and magnetic dipole moments , 2004, astro-ph/0406355.
[70] S. Hannestad. Neutrinos in cosmology , 2004, hep-ph/0404239.
[71] U. Florida,et al. Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.
[72] Edward J. Wollack,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.
[73] S. Burles,et al. SHARPENING THE PREDICTIONS OF BIG-BANG NUCLEOSYNTHESIS , 1999, astro-ph/9901157.
[74] M. Kamionkowski,et al. Cosmological signature of new parity violating interactions , 1998, astro-ph/9812088.
[75] G. Fuller,et al. New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.
[76] S. Xue. NEUTRINO MASSES AND MIXINGS , 1997, hep-ph/9706301.
[77] S. Xue. Quark masses and mixing angles , 1996, hep-ph/9610508.
[78] U. Seljak,et al. A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.
[79] Widrow,et al. Sterile neutrinos as dark matter. , 1993, Physical review letters.
[80] J. R. Bond,et al. Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .
[81] M. Rees,et al. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .
[82] M. S. Roberts,et al. The rotation curve and geometry of M31 at large galactocentric distances. , 1975 .
[83] R. B. Barreiro,et al. Planck 2015 results Special feature Planck 2015 results II . Low Frequency Instrument data processings , 2018 .