A new paradigm for parameter estimation in system modeling

SUMMARY In this paper, we consider a basic problem in system identification, that of estimating the unknown parameters of a given model by using input/output data. Available methods (extended Kalman filtering, unscented Kalman filtering, particle filtering, maximum likelihood, prediction error method, etc.) have been extensively studied in the literature, especially in relation to consistency analysis. Yet, other important aspects, such as computational complexity, have been somewhat overlooked so that, when such methods are used in practical problems, remarkable drawbacks may arise. This is why parameter estimation is often performed using empirical procedures. This paper aims to revisit the issue of setting up an estimator that is able to provide reliable estimates at low computational cost. In contrast to other paradigms, the main idea in the new introduced two-stage estimation method is to retrieve the estimator through simulation experiments in a training phase. Once training is terminated, the user is provided with an explicitly given estimator that can be used over and over basically with no computational effort. The advantages and drawbacks of the two-stage approach as well as other traditional paradigms are identified with an illustrative example. A more concrete example of tire parameter estimation is also provided. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[2]  Sergio Bittanti,et al.  Parameter estimation in the Pacejka's tyre model through the TS method , 2009 .

[3]  Lennart Ljung Perspectives on System Identification , 2008 .

[4]  T. Söderström On the uniqueness of maximum likelihood identification , 1975, Autom..

[5]  D. Q. Mayne Parameter estimation , 1966, Autom..

[6]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[7]  Karl Johan Åström,et al.  Maximum likelihood and prediction error methods , 1979, Autom..

[8]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[9]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[10]  T. Westerlund,et al.  Remarks on "Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems" , 1980 .

[11]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[12]  E. Hannan,et al.  The Statistical Theory of Linear Systems. , 1990 .

[13]  M. Boutayeb,et al.  Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems , 1997, IEEE Trans. Autom. Control..

[14]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[15]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[16]  Karl Johan Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .

[17]  Xiao-Li Hu,et al.  A Basic Convergence Result for Particle Filtering , 2008, IEEE Transactions on Signal Processing.

[18]  Giorgio Picci,et al.  Identification, adaptation, learning : the science of learning models from data , 1996 .

[19]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[20]  Eduardo F. Camacho,et al.  Model predictive control techniques for hybrid systems , 2010, Annu. Rev. Control..

[21]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[22]  Marco C. Campi,et al.  Why Is Resorting to Fate Wise? A Critical Look at Randomized Algorithms in Systems and Control , 2010, Eur. J. Control.

[23]  Hans B. Pacejka,et al.  Tire and Vehicle Dynamics , 1982 .

[24]  Sergio Bittanti,et al.  Revisiting the basic issue of parameter estimation in system identification - a new approach for multi-value estimation , 2008, 2008 47th IEEE Conference on Decision and Control.

[25]  Konrad Reif,et al.  The extended Kalman filter as an exponential observer for nonlinear systems , 1999, IEEE Trans. Signal Process..

[26]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[27]  Lennart Ljung,et al.  Perspectives on system identification , 2010, Annu. Rev. Control..

[28]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[29]  Sergio Bittanti,et al.  Estimation of white-box model parameters via artificial data generation: a two stage approach , 2008 .

[30]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[31]  Sean R. Anderson,et al.  Computational system identification for Bayesian NARMAX modelling , 2013, Autom..

[32]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systems , 1992, 1992 American Control Conference.

[33]  M. Genton,et al.  Robust Simulation-Based Estimation of ARMA Models , 2001 .

[34]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[35]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[36]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[37]  T. Bohlin On the problem of ambiguities in maximum likelihood identification , 1971 .

[38]  E. Kamen,et al.  Introduction to Optimal Estimation , 1999 .

[39]  Henrik Ohlsson,et al.  Four Encounters with System Identification , 2011, Eur. J. Control.

[40]  Torsten P. Bohlin,et al.  Practical Grey-box Process Identification: Theory and Applications , 2006 .

[41]  J. H. Westcott The parameter estimation problem , 1960 .