Spectral flow for pair compatible equipartitions

We show that a recent spectral flow approach proposed by Berkolaiko-Cox-Marzuola for analyzing the nodal deficiency of the nodal partition associated to an eigenfunction can be extended to more general partitions. To be more precise, we work with spectral equipartitions that satisfy a pair compatible condition. Nodal partitions and spectral minimal partitions are examples of such partitions. Along the way, we discuss different approaches to the Dirichlet-to-Neumann operators: via Aharonov-Bohm operators, via a double covering argument, and via a slitting of the domain.

[1]  W. Arendt,et al.  SPECTRAL PROPERTIES OF THE DIRICHLET-TO-NEUMANN OPERATOR ON LIPSCHITZ DOMAINS , 2007 .

[2]  S. Terracini,et al.  On the eigenvalues of Aharonov-Bohm operators with varying poles: pole approaching the boundary of the domain , 2013, 1310.1211.

[3]  Nodal Sets for Groundstates of Schrödinger Operators with Zero Magnetic Field in Non Simply Connected Domains , 1998, math/9807064.

[4]  Susanna Terracini,et al.  A variational problem for the spatial segregation of reaction-diffusion systems , 2003 .

[5]  Susanna Terracini,et al.  An optimal partition problem related to nonlinear eigenvalues , 2003 .

[6]  B. Helffer,et al.  Nodal Domains and Spectral Minimal Partitions , 2006, math/0610975.

[7]  N. Nadirashvili,et al.  Bounds on the Multiplicity of Eigenvalues for Fixed Membranes , 1998 .

[8]  L. Bers Local behavior of solutions of general linear elliptic equations , 1955 .

[9]  Bernard Helffer,et al.  Converse Spectral Problems for Nodal Domains , 2007 .

[10]  L. A. Cafferelli,et al.  An Optimal Partition Problem for Eigenvalues , 2007, J. Sci. Comput..

[11]  The Number of Nodal Domains on Quantum Graphs as a Stability Index of Graph Partitions , 2012 .

[12]  Susanna Terracini,et al.  On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae , 2003 .

[13]  Christopher Jones,et al.  A Morse Index Theorem for Elliptic Operators on Bounded Domains , 2014, 1404.5981.

[14]  Dorin Bucur,et al.  Optimal Partitions for Eigenvalues , 2009, SIAM J. Sci. Comput..

[15]  S. Terracini,et al.  Nodal sets of magnetic Schroedinger operators of Aharonov-Bohm type and energy minimizing partitions , 2009, 0902.3926.

[16]  E. Schrohe,et al.  Spectral flow of exterior Landau-Robin hamiltonians , 2015, 1505.06080.

[17]  P. Takáč,et al.  Eigenfunctions and Hardy inequalities for a magnetic Schrödinger operator in ℝ2 , 2003 .

[18]  I. Polterovich,et al.  Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces , 2012, 1209.4869.

[19]  G. Berkolaiko,et al.  Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map , 2018, Letters in Mathematical Physics.

[20]  Wolfgang Arendt,et al.  Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup , 2012 .

[21]  Corentin Léna Eigenvalues variations for Aharonov-Bohm operators , 2015 .

[22]  Thomas Beck,et al.  Limiting eigenfunctions of Sturm–Liouville operators subject to a spectral flow , 2020, Annales mathématiques du Québec.

[23]  B. Helffer,et al.  Aharonov–Bohm Hamiltonians, isospectrality and minimal partitions , 2009 .

[24]  J. Rubinstein,et al.  On the Zero Set of the Wave Function in Superconductivity , 1999 .

[25]  Peter Kuchment,et al.  Critical Partitions and Nodal Deficiency of Billiard Eigenfunctions , 2011, 1107.3489.

[26]  Bernard Helffer,et al.  On Spectral Properties of the Bloch-Torrey Operator in Two Dimensions , 2016, SIAM J. Math. Anal..

[27]  J. Brasche,et al.  The Friedrichs Extension of the Aharonov–Bohm Hamiltonian on a Disc , 2005 .

[28]  Bernard Helffer,et al.  NUMERICAL SIMULATIONS FOR NODAL DOMAINS AND SPECTRAL MINIMAL PARTITIONS , 2010 .

[29]  Bernard Helffer,et al.  Numerical Analysis of Nodal Sets for Eigenvalues of Aharonov–Bohm Hamiltonians on the Square with Application to Minimal Partitions , 2011, Exp. Math..

[30]  I. Holopainen Riemannian Geometry , 1927, Nature.

[31]  Lower bound for the number of critical points of minimal spectral k-partitions for k large , 2015, 1504.01015.