A theoretical study of atom ordering in copper–gold nanoalloy clusters

Energy calculations have been carried out on high symmetry icosahedral and cuboctahedral Cu–Au nanoalloy clusters of various compositions, with the interatomic interactions modelled by the Gupta many-body potential. For each composition, the lowest energy isomers (“homotops”) tend to have predominantly Au atoms on the surface and Cu atoms in the core, and this phenomenon is explained in terms of surface energy, atomic size and trends in cohesive energies. A number of order parameters and mixing energies have been introduced and it is shown that there is good correlation between the cluster binding energy and the average distance of the Au atoms from the centre of the cluster. Comparisons are made with previous theoretical calculations on Cu–Au clusters, as well as with experimental studies of the structures and atom ordering of deposited Cu–Au particles.

[1]  Julius Jellinek,et al.  On the problem of fitting many-body potentials. I. The minimal maximum error scheme and the paradigm of metal systems , 1999 .

[2]  J. Jellinek,et al.  13‐atom Ni‐Al alloy clusters: Structures and dynamics , 1997 .

[3]  Raju P. Gupta Lattice relaxation at a metal surface , 1981 .

[4]  Peter W. Stephens,et al.  Structural evolution of larger gold clusters , 1997 .

[5]  Bernd Hartke Global geometry optimization of small silicon clusters at the level of density functional theory , 1998 .

[6]  Andrei V. Ruban,et al.  Surface segregation energies in transition-metal alloys , 1999 .

[7]  Roy L. Johnston,et al.  Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm , 2002 .

[8]  J. Murrell,et al.  Modelling Cu, Ag and Au surfaces using empirical potentials , 1998 .

[9]  F. Despa,et al.  Stability effects of AunXm+ (X=Cu, Al, Y, In) clusters , 1999 .

[10]  Mark P. Andrews,et al.  Gas-phase "molecular alloys" of bulk immiscible elements: iron-silver (FexAgy) , 1992 .

[11]  Roy L. Johnston,et al.  Investigation of geometric shell aluminum clusters using the Gupta many-body potential , 2000 .

[12]  H. Fujita,et al.  Spontaneous alloying of copper into gold atom clusters , 1991 .

[13]  N. Rösch,et al.  On the evolution of cluster to bulk properties: a theoretical LCGTO-LDF study of free and coordinated Nin clusters (n=6-147) , 1994 .

[14]  R. Johnston,et al.  The development of metallic behaviour in clusters , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Roy L. Johnston,et al.  Atomic and molecular clusters , 2002 .

[16]  J. Jortner Cluster size effects , 1992 .

[17]  H. Yasuda,et al.  Effect of cluster size on the chemical ordering in nanometer-sized Au-75at%Cu alloy clusters , 1996 .

[18]  G. Pacchioni,et al.  Stability and other properties of Li13 clusters. An example of specific characteristics of clusters , 1984 .

[19]  E. Krissinel,et al.  13-Atom NiAl alloy clusters: correlation between structural and dynamical properties , 1997 .

[20]  D. Zanchet,et al.  Structure Population in Thiol-Passivated Gold Nanoparticles , 2000 .

[21]  P. A. Marcos,et al.  Structural and dynamical properties of Cu–Au bimetallic clusters , 1996 .

[22]  R. Johnston,et al.  A genetic algorithm for the structural optimization of Morse clusters , 2000 .

[23]  J. Nørskov,et al.  Size dependence of phase separation in small bimetallic clusters , 1995 .

[24]  A. M. Velasco,et al.  Structural and electronic properties of Pt/Fe nanoclusters from EHT calculations , 1999 .

[25]  Julius Jellinek,et al.  Theory of Atomic and Molecular Clusters , 1999 .

[26]  S. Haukka,et al.  Alloying in Cu/Pd Nanoparticle Catalysts , 1998 .

[27]  R. Johnston,et al.  Modeling calcium and strontium clusters with many-body potentials , 1997 .

[28]  J. Doll,et al.  Theoretical studies of the energetics and structures of atomic clusters , 1989 .

[29]  Julius Jellinek,et al.  NinAlm alloy clusters: analysis of structural forms and their energy ordering , 1996 .

[30]  Vítek,et al.  Many-body potentials and atomic-scale relaxations in noble-metal alloys. , 1990, Physical review. B, Condensed matter.

[31]  H. Yasuda,et al.  Cluster-size dependence of alloying behavior in gold clusters , 1994 .

[32]  G. Tendeloo,et al.  Transmission electron microscopy and Monte Carlo simulations of ordering in Au-Cu clusters produced in a laser vaporization source , 2001 .

[33]  Alonso,et al.  Embedded-atom method applied to bimetallic clusters: The Cu-Ni and Cu-Pd systems. , 1994, Physical review. B, Condensed matter.

[34]  D. Sánchez-Portal,et al.  Metallic bonding and cluster structure , 2000 .

[35]  C. Catlow,et al.  New insights into the structure of supported bimetallic nanocluster catalysts prepared from carbonylated precursors: a combined density functional theory and EXAFS study , 2001 .

[36]  間庭 秀世,et al.  Max Hansen and Kurt Anderko: Constitution of Binary Alloys. McGraw-Hill Book Co., New York, 1958, 1305頁, 23×16cm, \13.000. , 1958 .

[37]  J. Uppenbrink,et al.  Theoretical study of the structures and stabilities of iron clusters , 1995 .

[38]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[39]  Jonathan P. K. Doye,et al.  TOPICAL REVIEW: The effect of the range of the potential on the structure and stability of simple liquids: from clusters to bulk, from sodium to ? , 1996 .

[40]  A. M. Alvarez,et al.  Crystal Structures of Molecular Gold Nanocrystal Arrays , 1999 .