Evolutionary continuation methods for optimization problems

In this paper we develop evolutionary strategies for numerical continuation which we apply to scalar and multi-objective optimization problems. To be more precise, we will propose two different methods-an embedding algorithm and a multi-objectivization approach-which are designed to follow an implicitly defined curve where the aim can be to detect the endpoint of the curve (e.g., a root finding problem) or to approximate the entire curve (e.g., the Pareto set of a multi-objective optimization problem). We demonstrate that the novel approaches are very robust in finding the set of interest (point or curve) on several examples.

[1]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[2]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[3]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[4]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[5]  Mikkel T. Jensen,et al.  Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation , 2004, J. Math. Model. Algorithms.

[6]  Xiaodong Li,et al.  On performance metrics and particle swarm methods for dynamic multiobjective optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[7]  Carlos A. Coello Coello,et al.  A Memetic PSO Algorithm for Scalar Optimization Problems , 2007, 2007 IEEE Swarm Intelligence Symposium.

[8]  Qingfu Zhang,et al.  Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization , 2007, EMO.

[9]  David Greiner,et al.  Improving Computational Mechanics Optimum Design Using Helper Objectives: An Application in Frame Bar Structures , 2007, EMO.

[10]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[11]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[12]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[13]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[14]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[15]  Joshua D. Knowles,et al.  Investigations into the Effect of Multiobjectivization in Protein Structure Prediction , 2008, PPSN.

[16]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[17]  H. B. Keller Global Homotopies and Newton Methods , 1978 .

[18]  Kalyanmoy Deb,et al.  Dynamic Multiobjective Optimization Problems: Test Cases, Approximation, and Applications , 2003, EMO.

[19]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[20]  Martin Brown,et al.  Directed Multi-Objective Optimization , 2005, Int. J. Comput. Syst. Signals.

[21]  Xiaodong Li,et al.  Performance measures and particle swarm methods for dynamic multi-objective optimization problems , 2007, GECCO '07.

[22]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[23]  Carlos A. Coello Coello,et al.  A new memetic strategy for the numerical treatment of multi-objective optimization problems , 2008, GECCO '08.

[24]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[25]  Heinz Mühlenbein,et al.  Fuzzy Recombination for the Breeder Genetic Algorithm , 1995, ICGA.

[26]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[27]  F. Ficken The continuation method for functional equations , 1951 .