Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs
暂无分享,去创建一个
[1] Victor Neumann-Lara,et al. Tight and Untight Triangulations of Surfaces by Complete Graphs , 1995, J. Comb. Theory, Ser. B.
[2] G. Ringel. Map Color Theorem , 1974 .
[3] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[4] Vladimir P. Korzhik,et al. On the Number of Nonisomorphic Orientable Regular Embeddings of Complete Graphs , 2001, J. Comb. Theory, Ser. B.
[5] Vladimir P. Korzhik. Another Proof of the Map Color Theorem for Nonorientable Surfaces , 2002, J. Comb. Theory, Ser. B.
[6] Gerhard Ringel,et al. The combinatorial map color theorem , 1977, J. Graph Theory.
[7] Vladimir P. Korzhik,et al. Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.
[8] David W. Barnette,et al. Generating the triangulations of the projective plane , 1982, J. Comb. Theory, Ser. B.
[9] Mike J. Grannell,et al. Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.
[10] Javier Bracho,et al. Nonisomorphic complete triangulations of a surface , 2001, Discret. Math..
[11] Mike J. Grannell,et al. Recursive constructions for triangulations , 2002 .