A Generic Model for Perception-Action Systems. Analysis of a Knowledge-Based Prototype

In this paper we propose a general layered model for the design of perception-action system. We discuss some desirable properties such a system must support to meet the severe constrains imposed by the expected behaviour of reactive systems. SVEX, a knowledge-based multilevel system, is used as a test prototype to implement and evaluate those considerations.

[1]  Daniel Hernandez-Sosa,et al.  Distribution of image processing applications on a heterogeneous workstation network: modeling, load balancing, and experimental results , 1997, Optics & Photonics.

[2]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[3]  Sukhan Lee,et al.  Multilayer feedforward potential function network , 1988, IEEE 1988 International Conference on Neural Networks.

[4]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[5]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[6]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[7]  F. M. Hernández,et al.  DEVELOPMENT TOOL FOR COMPUTER VISION SYSTEMS AT PIXEL LEVEL , 1994 .

[8]  Heinrich Niemann,et al.  A knowledge-based vision system for industrial applications , 1990, Machine Vision and Applications.

[9]  Byoung-Tak Zhang,et al.  Accelerated Learning by Active Example Selection , 1994, Int. J. Neural Syst..

[10]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[11]  Javier Lorenzo,et al.  GD: A Measure Based on Information Theory for Attribute Selection , 1998, IBERAMIA.

[12]  Michael Spann,et al.  Image Segmentation and Uncertainty , 1987 .

[13]  S. Renals,et al.  Phoneme classification experiments using radial basis functions , 1989, International 1989 Joint Conference on Neural Networks.

[14]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Lotfi A. Zadeh,et al.  Commonsense Knowledge Representation Based on Fuzzy Logic , 1983, Computer.

[16]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[17]  M. Arbib,et al.  Vision, brain, and cooperative computation , 1990 .

[18]  Edward H. Shortliffe,et al.  The Dempster-Shafer theory of evidence , 1990 .

[19]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[20]  Antonio Falcón Martel,et al.  Contributions to the symbolic processing of segments in computer vision , 1996 .

[21]  J. Keller,et al.  Fuzzy set theoretic approach to computer vision: An overview , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[22]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[23]  Terrance L. Huntsberger,et al.  Representation of Uncertainty in Computer Vision Using Fuzzy Sets , 1986, IEEE Transactions on Computers.

[24]  Allen R. Hanson,et al.  A Methodology for the Development of General Knowledge-Based Vision Systems , 1984, Wissensbasierte Systeme.

[25]  Brian R. Gaines,et al.  Fuzzy reasoning and its applications , 1981 .

[26]  Lotfi A. Zadeh,et al.  PRUF—a meaning representation language for natural languages , 1978 .

[27]  R. Bajcsy Active perception , 1988 .