Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects
暂无分享,去创建一个
Olga Mena | Stefano Gariazzo | O. Mena | M. Tórtola | C. Ternes | P. F. de Salas | S. Gariazzo | C. A. Ternes | Mariam Tórtola | Pablo F. de Salas | Christoph A. Ternes
[1] J. Lesgourgues,et al. Probing neutrino masses with future galaxy redshift surveys , 2004, hep-ph/0403296.
[2] N. Palanque-Delabrouille,et al. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100 , 2017, 1702.03314.
[3] T. Schwetz,et al. Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos , 2018, Journal of High Energy Physics.
[4] Abhilash Mishra,et al. Inflationary Freedom and Cosmological Neutrino Constraints , 2014, 1401.7022.
[5] A. Yu. Smirnov,et al. Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy , 1986 .
[6] N. Haba,et al. Heavy neutrino mixing in the T2HK, the T2HKK and an extension of the T2HK with a detector at Oki Islands , 2017, The European Physical Journal C.
[7] R. Nichol,et al. Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.
[8] The IceCube Collaboration. Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU) , 2014, 1401.2046.
[9] S. Petcov,et al. The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments , 2001, hep-ph/0112074.
[10] W. M. Wood-Vasey,et al. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.
[11] P. Peebles,et al. Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.
[12] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.
[13] A. Melchiorri,et al. Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data , 2015, 1507.08665.
[14] M. Viel,et al. WEIGHING NEUTRINOS WITH COSMIC NEUTRAL HYDROGEN , 2015, 1507.05102.
[15] E. Hivon,et al. Reducing the H0 and σ8 tensions with dark matter-neutrino interactions. , 2017, 1710.02559.
[16] S. Kim,et al. Solar neutrino results in Super-Kamiokande-III , 2010, 1010.0118.
[17] G. Barenboim,et al. Exploring the intrinsic Lorentz-violating parameters at DUNE , 2018, Physics Letters B.
[18] Christophe Ringeval,et al. Background reionization history from omniscopes , 2012, 1208.4277.
[19] Thibaut Louis,et al. Towards a cosmological neutrino mass detection , 2015, 1509.07471.
[20] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[21] B. Yanny,et al. Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1 , 2017, Monthly Notices of the Royal Astronomical Society.
[22] P. Coloma. Non-standard interactions in propagation at the Deep Underground Neutrino Experiment , 2015, 1511.06357.
[23] Hirata,et al. Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.
[24] J. T. Childers,et al. Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using sqrt(s)=7 TeV pp collisions with the ATLAS detector , 2011, 1110.2299.
[25] O. Miranda,et al. Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study , 2016, 1612.07377.
[26] Mervyn J. Lynch,et al. THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.
[27] Paul J. Steinhardt,et al. Cosmic Concordance and Quintessence , 1999, astro-ph/9901388.
[28] S. Borgani,et al. Neutrino constraints: what large-scale structure and CMB data are telling us? , 2014, 1407.8338.
[29] A. Cimatti,et al. Measuring the neutrino mass from future wide galaxy cluster catalogues , 2011, 1112.4810.
[30] M. Hazumi,et al. Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations , 2016 .
[31] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[32] P. Schneider,et al. KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.
[33] P. C. de Holanda,et al. Quantum decoherence effects in neutrino oscillations at DUNE , 2018, Physical Review D.
[34] Olga Mena,et al. Cosmic dark radiation and neutrinos , 2013, 1307.0637.
[35] Neutrino masses and the number of neutrino species from WMAP and 2dFGRS , 2003, astro-ph/0303076.
[36] V. Domcke,et al. Detection prospects for the Cosmic Neutrino Background using laser interferometers , 2017, 1703.08629.
[37] A. Smirnov,et al. Neutrino Propagation in Matter , 2013, 1306.2903.
[38] D. Parkinson,et al. SIMULTANEOUS CONSTRAINTS ON THE NUMBER AND MASS OF RELATIVISTIC SPECIES , 2012, 1210.2131.
[39] Martin J. Rees,et al. 21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .
[40] M. Viel,et al. Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.
[41] F. Ferrari. Extended N=1 super Yang-Mills theories , 2007, 0709.0472.
[42] S. Ho,et al. Unveiling $ν$ secrets with cosmological data: neutrino masses and mass hierarchy , 2017, 1701.08172.
[43] Hannes Jensen,et al. Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.
[44] A. Mirizzi,et al. Role of dense matter in collective supernova neutrino transformations , 2008, 0807.0659.
[45] Park,et al. Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.
[46] O. Mena,et al. Neutrino masses and their ordering: global data, priors and models , 2018, 1801.04946.
[47] S. Petcov,et al. The SNO solar neutrino data, neutrinoless double beta decay and neutrino mass spectrum , 2002, hep-ph/0205022.
[48] Graeme Smecher,et al. Calibrating CHIME: a new radio interferometer to probe dark energy , 2014, Astronomical Telescopes and Instrumentation.
[49] P. Huber,et al. Hints for Leptonic CP Violation or New Physics? , 2016, Physical review letters.
[50] W. Percival,et al. NEW NEUTRINO MASS BOUNDS FROM SDSS-III DATA RELEASE 8 PHOTOMETRIC LUMINOUS GALAXIES , 2012, 1201.1909.
[51] P. Pasquini,et al. Shadowing Neutrino Mass Hierarchy with Lorentz Invariance Violation , 2018, 1806.08752.
[52] J. Lesgourgues,et al. Cosmology in the era of Euclid and the Square Kilometre Array , 2018, Journal of Cosmology and Astroparticle Physics.
[53] Limin Wang,et al. Quintessence, cosmic coincidence, and the cosmological constant , 1999 .
[54] R. Trotta. Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.
[55] A. Slosar,et al. Measurement of baryon acoustic oscillation correlations at z=2.3 with SDSS DR12 Lya-Forests [Measurements of BAO correlations at z = 2.3 with SDSS DR12 Lyα-Forests] , 2017 .
[56] C. K. Lee,et al. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector , 1998 .
[57] Columbia,et al. MassiveNuS: cosmological massive neutrino simulations , 2017, 1711.10524.
[58] Martin Kilbinger,et al. Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.
[59] M. Lattanzi,et al. Comment on "Strong Evidence for the Normal Neutrino Hierarchy" , 2017, 1703.04585.
[60] Asantha Cooray,et al. Cosmological and Astrophysical Parameter Measurements with 21-cm Anisotropies During the Era of Reionization , 2006, astro-ph/0605677.
[61] A. Melchiorri,et al. Relic Neutrinos, thermal axions and cosmology in early 2014 , 2014, 1403.4852.
[62] A. Melchiorri,et al. Dark radiation sterile neutrino candidates after Planck data , 2013 .
[63] R. Nichol,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.
[64] O. Peres,et al. Visible neutrino decay at DUNE , 2017, 1705.03599.
[65] M. Kilbinger,et al. CFHTLS weak-lensing constraints on the neutrino masses , 2008, 0810.0555.
[66] G. Dvali,et al. Small neutrino masses from gravitational θ-term , 2016, 1602.03191.
[67] R. S. Ward. Completely solvable gauge-field equations in dimension greater than four , 1984 .
[68] W. Percival,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions , 2016, 1607.03148.
[69] S. Ho,et al. Impact of neutrino properties on the estimation of inflationary parameters from current and future observations , 2016, 1610.08830.
[70] S. Choubey,et al. Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments , 2012, Journal of High Energy Physics.
[71] M. Lindner,et al. Series expansions for three-flavor neutrino oscillation probabilities in matter , 2004, hep-ph/0402175.
[72] Adam D. Myers,et al. Measurement of baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9 , 2013, 1301.3459.
[73] J. Farine,et al. Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory , 2001 .
[74] M. Decowski,et al. Constraints on 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND , 2010, 1009.4771.
[75] M. Agostini,et al. Discovery probability of next-generation neutrinoless double- β decay experiments , 2017, 1705.02996.
[76] A. Pope,et al. Redshift-space distortions in massive neutrino and evolving dark energy cosmologies , 2015, 1506.07526.
[77] R. Funchal,et al. Impact of Beyond the Standard Model physics in the detection of the Cosmic Neutrino Background , 2017, Journal of High Energy Physics.
[78] Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range , 2018, Journal of High Energy Physics.
[79] S. Hannestad,et al. Measuring neutrino masses and dark energy with weak lensing tomography , 2006, astro-ph/0603019.
[80] A. Loeb,et al. A small amount of mini-charged dark matter could cool the baryons in the early Universe , 2018, Nature.
[81] S. Hannestad,et al. Grid based linear neutrino perturbations in cosmological N-body simulations , 2008, 0812.3149.
[82] S. Choubey,et al. Neutrino physics with non-standard interactions at INO , 2015, 1507.02211.
[83] F. Montanari,et al. Galileon gravity in light of ISW, CMB, BAO and H0 data , 2017, 1707.02263.
[84] A. Slosar,et al. Observables sensitive to absolute neutrino masses: A reappraisal after WMAP 3-year and first MINOS results , 2006, hep-ph/0608060.
[85] Ipmu,et al. Constraints on Neutrino Masses from Weak Lensing , 2008, 0810.4921.
[86] M. Viel,et al. Neutrino signatures on the high-transmission regions of the Lyman $\boldsymbol {\alpha }$ forest , 2011, 1106.2543.
[87] J. Bartlett,et al. redMaPPer – III. A detailed comparison of the Planck 2013 and SDSS DR8 redMaPPer cluster catalogues , 2014, 1401.7716.
[88] G. Holder,et al. Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn , 2018, 1802.07432.
[89] Zheng Wang,et al. Neutrino Physics with JUNO , 2015, 1507.05613.
[90] Edward J. Wollack,et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.
[91] Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double- β decay , 2018, Physical Review C.
[92] G. Barenboim,et al. Neutrinos, DUNE and the world best bound on CPT invariance , 2017, 1712.01714.
[93] A. Goobar,et al. Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z)≥−1 are tighter than those obtained in ΛCDM , 2018, Physical Review D.
[94] L. Y. Wang,et al. Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.
[95] A. Aurisano. Recent Results from MINOS and MINOS , 2018 .
[96] W. Percival,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low-redshift sample of Data Release 11 , 2014, 1401.1768.
[97] S. Furlanetto. The 21-cm Line as a Probe of Reionization , 2015, 1511.01131.
[98] J. Lesgourgues,et al. Physical effects involved in the measurements of neutrino masses with future cosmological data , 2016, 1610.09852.
[99] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[100] J. Lesgourgues,et al. Neutrino Cosmology by Julien Lesgourgues , 2013 .
[101] A. Loeb,et al. Cosmological constraints from 21cm surveys after reionization , 2008, 0812.0419.
[102] S. Ho,et al. Constraints on neutrino masses from Planck and Galaxy clustering data , 2013, 1306.5544.
[103] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[104] Yi-Fan Wang,et al. Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample , 2017, 1707.00588.
[105] L. Price,et al. Testing for new physics: neutrinos and the primordial power spectrum , 2016, 1606.03057.
[106] M Busch,et al. Search for Neutrinoless Double-β Decay in ^{76}Ge with the Majorana Demonstrator. , 2017, Physical review letters.
[107] Scott Croom,et al. WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies , 2011, 1112.4940.
[108] A. Rújula,et al. Calorimetric measurements of 163holmium decay as tools to determine the electron neutrino mass , 1982 .
[109] Ny,et al. Current Status and Future Prospects of the SNO+ Experiment , 2015, 1508.05759.
[110] J. Valle,et al. Neutrino oscillations refitted , 2014, 1405.7540.
[111] M. Lattanzi,et al. Status of Neutrino Properties and Future Prospects—Cosmological and Astrophysical Constraints , 2017, Front. Phys..
[112] C. A. Oxborrow,et al. Planck 2015 results. I. Overview of products and scientific results , 2015 .
[113] A. Melchiorri,et al. Constraints on massive sterile neutrino species from current and future cosmological data , 2011, 1102.4774.
[114] Philip Bull,et al. LATE-TIME COSMOLOGY WITH 21 cm INTENSITY MAPPING EXPERIMENTS , 2014, 1405.1452.
[115] D. Dutta,et al. Effect of non-unitarity on neutrino mass hierarchy determination at DUNE, NOνA and T2K , 2016, 1609.07094.
[116] A. Slosar,et al. DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.
[117] M. Viel,et al. Modeling the neutral hydrogen distribution in the post-reionization Universe: intensity mapping , 2014, 1405.6713.
[118] W. Hofmann,et al. The large enriched germanium experiment for neutrinoless double beta decay (LEGEND) , 2017, 1709.01980.
[119] Michael S. Warren,et al. Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.
[120] David F. Moore,et al. PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.
[121] G. Farrar,et al. Constraints on Dark Matter with a moderately large and velocity-dependent DM-nucleon cross-section , 2018, Journal of Cosmology and Astroparticle Physics.
[122] J. Valle,et al. Neutrino oscillations from warped flavor symmetry: predictions for long baseline experiments T2K, NOvA and DUNE , 2016, 1610.05962.
[123] Martin J. Rees,et al. The 21-cm line at high redshift: a diagnostic for the origin of large scale structure , 1990 .
[124] Arka Banerjee,et al. Simulating nonlinear cosmological structure formation with massive neutrinos , 2016, 1606.06167.
[125] Cosmology of Mass-Varying Neutrinos Driven by Quintessence: Theory and Observations , 2005, astro-ph/0512367.
[126] Andrea Giuliani,et al. Neutrinoless Double-Beta Decay , 2012 .
[127] Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.
[128] A preference for a non-zero neutrino mass from cosmological data , 2003, astro-ph/0306386.
[129] A. Hektor,et al. The EDGES 21 cm anomaly and properties of dark matter , 2018, Physics Letters B.
[130] J. J. Bock,et al. BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization , 2014, Astronomical Telescopes and Instrumentation.
[131] Abraham Loeb,et al. 21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.
[132] Matias Zaldarriaga,et al. Fast Fourier transform telescope , 2008, 0805.4414.
[133] J.Coleman,et al. Hyper-Kamiokande Design Report , 2018, 1805.04163.
[134] Eleonora Di Valentino,et al. Global constraints on absolute neutrino masses and their ordering , 2017, 1703.04471.
[135] K. Ichiki,et al. Neutrino Masses from Cosmological Probes in Interacting Neutrino Dark-Energy Models , 2008, 0803.2274.
[136] August E. Evrard,et al. Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.
[137] H. Hoekstra,et al. KiDS-450: testing extensions to the standard cosmological model , 2016, 1610.04606.
[138] Scott Croom,et al. The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.
[139] Neutrinoless universe. , 2004, Physical review letters.
[140] Max Tegmark,et al. Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.
[141] S. Choubey,et al. Sensitivity to neutrino decay with atmospheric neutrinos at the INO-ICAL detector , 2017, 1709.10376.
[142] M. Misiaszek,et al. Improved Limit on Neutrinoless Double-β Decay of ^{76}Ge from GERDA Phase II. , 2018, Physical review letters.
[143] W. Rodejohann. NEUTRINO-LESS DOUBLE BETA DECAY AND PARTICLE PHYSICS , 2011, 1106.1334.
[144] Steven Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .
[145] M. B. Gavela,et al. Dark coupling , 2009, 0901.1611.
[146] Kris Sigurdson,et al. Cosmological signatures of interacting neutrinos , 2006 .
[147] Edward J. Wollack,et al. Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report , 2013, 1305.5422.
[148] Dipak Munshi,et al. Cosmology with weak lensing surveys. , 2005, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.
[149] B. Madore,et al. The Hubble Constant , 2010, 1004.1856.
[150] L. Verde,et al. Hiding neutrino mass in modified gravity cosmologies , 2016, 1612.02598.
[151] G.G.Raffelt G.Sigl. Self-induced decoherence in dense neutrino gases , 2007, hep-ph/0701182.
[152] Ole Eggers Bjælde,et al. Neutrino dark energy—revisiting the stability issue , 2007, 0705.2018.
[153] arXiv : New Physics in the Rayleigh-Jeans Tail of the CMB , 2018, 1803.07048.
[154] Yong-Seon Song,et al. Determining Neutrino Mass from the CMB Alone , 2003, astro-ph/0303344.
[155] J. Lesgourgues,et al. Calculation of the local density of relic neutrinos , 2017, 1706.09850.
[156] Gravitational lensing of supernova neutrinos , 2006, astro-ph/0610918.
[157] S. Kim,et al. Evidence for oscillation of atmospheric neutrinos , 1998 .
[158] J. Lesgourgues,et al. Cosmological parameters from large scale structure - geometric versus shape information , 2010, 1003.3999.
[159] Stuart Wyithe,et al. Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts , 2007, 0709.2955.
[160] H. Haren,et al. KM3MeT 2.0 Letter of intent for ARCA and ORCA , 2016 .
[161] Chang Wei Loh,et al. Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment , 2016, 1610.04802.
[162] D. Parkinson,et al. Combining Planck data with large scale structure information gives a strong neutrino mass constraint , 2013, 1306.4153.
[163] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[164] A. Elagin,et al. Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator , 2014, 1409.5864.
[165] Matias Zaldarriaga,et al. How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.
[166] Cosmology with massive neutrinos coupled to dark energy. , 2005, Physical review letters.
[167] Georg G. Raffelt,et al. Neutrino and axion hot dark matter bounds after WMAP-7 , 2010, 1004.0695.
[168] K M Heeger,et al. Search for Neutrinoless Double-Beta Decay of (130)Te with CUORE-0. , 2015, Physical review letters.
[169] E. Calabrese,et al. Distinguishing between Neutrinos and time-varying Dark Energy through Cosmic Time , 2017, 1706.00730.
[170] M. Viel,et al. Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.
[171] D. Schneider,et al. Measurement of BAO correlations at $z=2.3$ with SDSS DR12 \lya-Forests , 2017, 1702.00176.
[172] M. Lindner,et al. Atmospheric trident production for probing new physics , 2017, 1702.02617.
[173] J. Hill,et al. ournal of C osmology and A stroparticle hysics Can early dark energy explain EDGES? , 2022 .
[174] C. Baugh,et al. Modified gravity with massive neutrinos as a testable alternative cosmological model. , 2014, 1404.1365.
[175] Lincoln Wolfenstein,et al. Neutrino Oscillations in Matter , 1978 .
[176] M. T. Barrera,et al. First Result on the Neutrinoless Double-β Decay of ^{82}Se with CUPID-0. , 2018, Physical review letters.
[177] Ashley J. Ross,et al. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at Redshift of 0.72 with the DR14 Luminous Red Galaxy Sample , 2017, The Astrophysical Journal.
[178] Yong-Seon Song,et al. Determining neutrino mass from the cosmic microwave background alone. , 2003, Physical review letters.
[179] S. Choubey,et al. Bounds on Non-Standard Neutrino Interactions Using PINGU , 2014, 1410.0410.
[180] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[181] A. Cimatti,et al. Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys , 2010, 1012.2868.
[182] G. D'Amico,et al. Bounds on Dark-Matter Annihilations from 21-cm Data. , 2018, Physical review letters.
[183] Bennett,et al. Measurement of the neutrino mass using the inner bremsstrahlung emitted in the electron-capture decay of 163Ho. , 1987, Physical review. A, General physics.
[184] Daniel Thomas,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy correlation function , 2016, 1610.03506.
[185] B. H. LaRoque,et al. Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method , 2013, 1309.7093.
[186] M. Viel,et al. The effect of neutrinos on the matter distribution as probed by the intergalactic medium , 2010, 1003.2422.
[188] Ashley J. Ross,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample , 2012, 1203.6594.
[189] Relic neutrino absorption spectroscopy , 2004, hep-ph/0401203.
[190] M. Tórtola,et al. New physics vs new paradigms: distinguishing CPT violation from NSI , 2018, The European Physical Journal C.
[191] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[192] P. Vogel,et al. Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei , 2007, 0710.5312.
[193] S. Joudaki. Constraints on Neutrino Mass and Light Degrees of Freedom in Extended Cosmological Parameter Spaces , 2012, 1202.0005.
[194] A. Falkowski,et al. 21cm absorption signal from charge sequestration , 2018, 1803.10096.
[195] Jounghun Lee,et al. Breaking the Cosmic Degeneracy between Modified Gravity and Massive Neutrinos with the Cosmic Web , 2014, 1404.3639.
[196] Adam G. Riess,et al. Observational probes of cosmic acceleration , 2012, 1201.2434.
[197] A. Lasenby,et al. polychord: next-generation nested sampling , 2015, 1506.00171.
[198] Y. Farzan,et al. Shedding light on LMA-dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50 , 2014, 1403.0744.
[199] R.Gill,et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF , 2015, 1512.06148.
[200] Va,et al. Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2011, 1106.5194.
[201] Ole Eggers Bjælde,et al. Dark energy and neutrino constraints from a future EUCLID-like survey , 2013 .
[202] A. Mirizzi,et al. Cosmological constraints on neutrino plus axion hot dark matter: update after WMAP-5 , 2007, 0803.1585.
[203] A. Gilbert,et al. The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.
[204] M. Archidiacono,et al. Efficient calculation of cosmological neutrino clustering in the non-linear regime , 2015, 1510.02907.
[205] A. Ringwald,et al. Gravitational clustering of relic neutrinos and implications for their detection , 2004, hep-ph/0408241.
[206] K. Murase. New Prospects for Detecting High-Energy Neutrinos from Nearby Supernovae , 2017, 1705.04750.
[207] S. Hannestad,et al. νCONCEPT: cosmological neutrino simulations from the non-linear Boltzmann hierarchy , 2017, Journal of Cosmology and Astroparticle Physics.
[208] David R. DeBoer,et al. PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM , 2015, 1503.00045.
[209] A. Palazzo,et al. Signatures of a light sterile neutrino in T2HK , 2018, Journal of High Energy Physics.
[210] José W. F. Valle,et al. Neutrinoless Double beta Decay in SU(2) x U(1) Theories , 1982 .
[211] Ilian T. Iliev,et al. On the Direct Detectability of the Cosmic Dark Ages: 21 Centimeter Emission from Minihalos , 2002 .
[212] F. Simpson,et al. Strong Bayesian evidence for the normal neutrino hierarchy , 2017, 1703.03425.
[213] KamLAND-Zen Collaboration,et al. First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance , 2002 .
[214] I. Štekl,et al. Probing new physics models of neutrinoless double beta decay with SuperNEMO , 2010, 1005.1241.
[215] M. Geller,et al. The HectoMAP Cluster Survey. II. X-Ray Clusters , 2017, 1712.00029.
[216] A. Giachero,et al. CUORE-0 detector: design, construction and operation , 2016, Journal of Instrumentation.
[217] H. Janka,et al. Supernova Neutrinos: Production, Oscillations and Detection , 2015, 1508.00785.
[218] P. Vogel. How difficult it would be to detect cosmic neutrino background , 2015 .
[219] A. Gouvea,et al. Non-standard neutrino interactions at DUNE , 2015, 1511.05562.
[220] W. Hampel,et al. Reanalysis of the GALLEX solar neutrino flux and source experiments , 2010, 1001.2731.
[221] M. Sorel,et al. The Search for neutrinoless double beta decay , 2011, 1109.5515.
[222] O. Mena,et al. EDGES result versus CMB and low-redshift constraints on ionization histories , 2018, Physical Review D.
[223] C. A. Oxborrow,et al. Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .
[224] A. Loeb,et al. 21-cm Fluctuations from Charged Dark Matter. , 2018, Physical review letters.
[225] M. Morales,et al. ADDING CONTEXT TO JAMES WEBB SPACE TELESCOPE SURVEYS WITH CURRENT AND FUTURE 21 cm RADIO OBSERVATIONS , 2014, 1410.5427.
[226] R. Ellis,et al. The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.
[227] L. Verde,et al. Neutrino mass limits: robust information from the power spectrum of galaxy surveys , 2015, 1511.05983.
[228] Scott Croom,et al. The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.
[229] A. Rogers,et al. A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.
[230] F. Šimkovic,et al. Beta Decaying Nuclei as a Probe of Cosmic Neutrino Background , 2011, 1102.1799.
[231] Michele Limon,et al. CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.
[232] Animesh Chatterjee,et al. Probing Lorentz and CPT violation in a magnetized iron detector using atmospheric neutrinos , 2014, 1402.6265.
[233] A. Cooray. Weighing neutrinos: Weak lensing approach , 1999, astro-ph/9904246.
[234] A. Lewis,et al. Prospects for constraining neutrino mass using Planck and Lyman-{alpha} forest data , 2007, 0705.3100.
[235] A. Merle,et al. Global Bayesian analysis of neutrino mass data , 2017, 1705.01945.
[236] Neutrino mass limits from SDSS, 2dFGRS and WMAP , 2003, hep-ph/0312065.
[237] Matthew Colless,et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.
[238] Y. Qian,et al. Collective Neutrino Oscillations , 2010, 1001.2799.
[239] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.
[240] A. Melchiorri,et al. Dark radiation sterile neutrino candidates after Planck data , 2013, 1304.5981.
[241] A. Myers,et al. Baryon Acoustic Oscillations in the Ly-\alpha\ forest of BOSS quasars , 2012, 1211.2616.
[242] I. Albuquerque,et al. Probing velocity dependent self-interacting dark matter with neutrino telescopes , 2017, 1711.02052.
[243] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[244] E. Rykoff,et al. redMaPPer II: X-RAY AND SZ PERFORMANCE BENCHMARKS FOR THE SDSS CATALOG , 2013, 1303.3373.
[245] D. Schneider,et al. Baryon acoustic oscillations from the complete SDSS-III Ly$\alpha$-quasar cross-correlation function at $z=2.4$ , 2017, 1708.02225.
[246] D. Schramm,et al. New physics from supernova 1987A , 1990 .
[247] J. P. Rodrigues,et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data , 2014, 1410.7227.
[248] O. Dor'e,et al. Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude , 2018, The Astrophysical Journal.
[249] A. Hopkins,et al. Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield , 2013, 1307.4738.
[250] How to Detect Big Bang Relic Neutrinos , 2005, hep-ph/0505024.
[251] P. A. R. Ade,et al. SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.
[252] P. A. R. Ade,et al. Exploring cosmic origins with CORE: Survey requirements and mission design , 2017, Journal of Cosmology and Astroparticle Physics.
[253] Matias Zaldarriaga,et al. Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.
[254] K. Blaum,et al. Direct Measurement of the Mass Difference of $^{163}$Ho and $^{163}$Dy Solves the $Q$-Value Puzzle for the Neutrino Mass Determination , 2015, 1604.04210.
[255] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM , 2011, 1104.2934.
[256] B. Yanny,et al. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.
[257] L. Moscardini,et al. Cosmic Degeneracies I: Joint N-body Simulations of Modified Gravity and Massive Neutrinos , 2013, 1311.2588.
[258] Neutrino mass and dark energy from weak lensing. , 2002, Physical review letters.
[259] A. Silvestri,et al. Do current cosmological observations rule out all covariant Galileons , 2017, 1711.04760.
[260] P. Machado,et al. Distorted neutrino oscillations from time varying cosmic fields , 2018 .
[261] The Cupid Interest Group. CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification , 2015, 1504.03599.
[262] Ashley J. Ross,et al. The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.
[263] S. Ananthakrishnan. The Giant Meterwave Radio Telescope / GMRT , 1995 .
[264] G. Raffelt,et al. Self-induced conversion in dense neutrino gases : Pendulum in flavor space , 2006 .
[265] S. Dodelson,et al. Neutrino mass priors for cosmology from random matrices , 2017, 1711.08434.
[266] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[267] J. Valle,et al. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity , 2017, Physics Letters B.
[268] E. Giusarma,et al. Testing standard and nonstandard neutrino physics with cosmological data , 2012, 1211.2154.
[269] J. Menendez,et al. Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review , 2016, Reports on progress in physics. Physical Society.
[270] Wayne Hu,et al. Cosmological information from lensed CMB power spectra , 2006 .
[271] Mattias Blennow,et al. Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering , 2013, 1311.1822.
[272] H. Janka. Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.
[273] L. Verde,et al. Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.
[274] M. Viel,et al. Neutrinoless Double Beta Decay: 2015 Review , 2016, 1601.07512.
[275] O. Mena,et al. Unified graphical summary of neutrino mixing parameters , 2003, hep-ph/0312131.
[276] J. Lesgourgues,et al. Current cosmological bounds on neutrino masses and relativistic relics , 2004, hep-ph/0402049.
[277] A. Myers,et al. The one-dimensional Lyα forest power spectrum from BOSS , 2013, 1306.5896.
[278] Martin J. Rees,et al. Radio Signatures of H I at High Redshift: Mapping the End of the “Dark Ages” , 2000 .
[279] C. A. Oxborrow,et al. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.
[280] D. York,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample , 2012, 1211.3741.
[281] B. Han,et al. Sterile Neutrino Search at the NEOS Experiment. , 2016, Physical review letters.
[282] J. Harnois-Déraps,et al. Precision reconstruction of the cold dark matter-neutrino relative velocity from N -body simulations , 2015, 1503.07480.
[283] D. Hooper,et al. Severely Constraining Dark-Matter Interpretations of the 21-cm Anomaly. , 2018, Physical review letters.
[284] Prospect for Relic Neutrino Searches , 2004, hep-ph/0412305.
[285] Paul J. Steinhardt,et al. Cosmological imprint of an energy component with general equation of state , 1998 .
[286] S. R. Kim,et al. Technical Design Report for the AMoRE $0νββ$ Decay Search Experiment , 2015 .
[287] J. Lesgourgues,et al. Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors , 2012, 1210.2194.
[288] M. Hartz,et al. Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV , 2017, 1710.09126.
[289] Probing the epoch of early baryonic infall through 21-cm fluctuations , 2005, astro-ph/0502083.
[290] Ue-Li Pen,et al. Baryon acoustic oscillation intensity mapping of dark energy. , 2007, Physical review letters.
[291] Calatayud Cadenillas,et al. Matter effects in neutrino visible decay at future long-baseline experiments , 2018 .
[292] M. Dolan,et al. Increasing Neff with particles in thermal equilibrium with neutrinos , 2012, 1207.0497.
[293] S. Inoue,et al. Probing small-scale cosmological fluctuations with the 21 cm forest: Effects of neutrino mass, running spectral index, and warm dark matter , 2014, 1403.1605.
[294] V. S. Subrahmanyam,et al. Invited review: Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO) , 2015, 1505.07380.
[295] A. Gouvea,et al. Neutrino versus antineutrino oscillation parameters at DUNE and Hyper-Kamiokande experiments , 2017, 1709.06090.
[296] A. Melchiorri,et al. Cosmological limits on neutrino unknowns versus low redshift priors , 2015, 1511.00975.
[297] K. Whisnant,et al. Nonstandard interactions in solar neutrino oscillations with Hyper-Kamiokande and JUNO , 2017, 1704.04711.
[298] Scoap. Sensitivity of NEXT-100 to neutrinoless double beta decay , 2016 .
[299] Julian B. Muñoz,et al. Efficient computation of galaxy bias with neutrinos and other relics , 2018, Physical Review D.
[300] J. Hamann,et al. Measuring neutrino masses with a future galaxy survey , 2012, 1209.1043.
[301] The Cosmon model for an asymptotically vanishing time dependent cosmological 'constant' , 1994, hep-th/9408025.
[302] A. Heavens,et al. Determining the Neutrino Mass Hierarchy with Cosmology , 2009, 0907.1917.
[303] W. Sutherland. The CMB neutrino mass / vacuum energy degeneracy: a simple derivation of the degeneracy slopes , 2018, 1803.02298.
[304] S. Choubey,et al. A study of invisible neutrino decay at DUNE and its effects on θ23 measurement , 2017, 1705.05820.
[305] Yun Chen,et al. Galaxy clustering, CMB and supernova data constraints on ϕ CDM model with massive neutrinos , 2015, 1507.02008.
[306] A. Melchiorri,et al. Cosmological and astrophysical neutrino mass measurements , 2011, 1103.5083.
[307] G. Raffelt,et al. Decoherence in supernova neutrino transformations suppressed by deleptonization , 2007, 0706.2498.
[308] Alan E. E. Rogers,et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.
[309] J. Hamann,et al. Cosmology seeking friendship with sterile neutrinos , 2010, 1006.5276.
[310] A. Loeb,et al. A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.
[311] S. Borgani,et al. Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters , 2013, 1311.1514.
[312] A. Mirizzi,et al. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos , 2010, 1002.2943.
[313] Steen Hannestad. Neutrino masses and the dark energy equation of state: relaxing the cosmological neutrino mass bound. , 2005, Physical review letters.
[314] J. Farine,et al. Measurement of the rate of νe+d → p+p+e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory , 2002 .
[315] C. Giunti,et al. Predictions for neutrinoless double-beta decay in the 3+1 sterile neutrino scenario , 2015, 1505.00978.
[316] R. Peccei,et al. CP Conservation in the Presence of Pseudoparticles , 1977 .
[317] C. Lunardini,et al. Probing the neutrino mass hierarchy and the 13-mixing with supernovae , 2003, hep-ph/0302033.
[318] G. Salamanna,et al. A new way to determine the neutrino mass hierarchy at reactors , 2017, 1707.07651.
[319] Massive neutrinos in cosmology: Analytic solutions and fluid approximation , 2010 .
[320] E. Lisi,et al. PINGU and the neutrino mass hierarchy: Statistical and systematic aspects , 2015, 1503.01999.
[321] A. Slosar,et al. Improved cosmological bound on the thermal axion mass , 2007, 0705.2695.
[322] Oliver Zahn,et al. CMB Lensing Constraints on Neutrinos and Dark Energy , 2009, 0901.0916.
[323] Shaun A. Thomas,et al. Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.
[324] M. Sullivan,et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.
[325] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[326] Y. S. Tsai,et al. The impact of EDGES 21-cm data on dark matter interactions , 2018, Physics Letters B.
[327] A. Mirizzi,et al. Signatures of collective and matter effects on supernova neutrinos at large detectors , 2010, 1008.0308.
[328] Stephan Aune,et al. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers , 2016, 1610.08883.
[329] Adam D. Myers,et al. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations , 2013, 1311.1767.
[330] H. W. Wang,et al. Study of Rare Nuclear Processes with CUORE , 2018, 1801.05403.
[331] Aviad Cohen,et al. Constraining Baryon-Dark-Matter Scattering with the Cosmic Dawn 21-cm Signal. , 2018, Physical review letters.
[332] V. Pettorino,et al. Neutrino clustering in growing neutrino quintessence , 2008, 0802.1515.
[333] Hiranya V. Peiris,et al. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization , 2015, 1509.06770.
[334] M. Weber,et al. Search for Majorana neutrinos with the first two years of EXO-200 data , 2014, Nature.
[335] Neutrino mass spectrum and future beta decay experiments , 2001, hep-ph/0105105.
[336] F. Šimkovic,et al. Theory of neutrinoless double-beta decay , 2012, Reports on progress in physics. Physical Society.
[337] S. Choubey,et al. Prospects of indirect searches for dark matter at INO , 2017, 1711.02546.
[338] K. Scholberg,et al. Supernova neutrino detection , 2000, 1205.6003.
[339] J. Lesgourgues,et al. Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.
[340] J. Lesgourgues,et al. Probing neutrino masses with CMB lensing extraction , 2006 .
[341] V. Volchenko,et al. Possible Detection of a Neutrino Signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research , 1987 .
[342] J. Lesgourgues,et al. Neutrino Mass from Cosmology , 2012, 1212.6154.
[343] S. Markoff,et al. LOFAR - low frequency array , 2006 .
[344] Yu-Feng Li. Detection Prospects of the Cosmic Neutrino Background , 2015, 1504.03966.
[345] S. Ho,et al. Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses , 2018, Physical Review D.
[346] F. Weiss. Pancreatic cancer risk in hereditary pancreatitis , 2014, Front. Physiol..
[347] J. Valle,et al. Probing atmospheric mixing and leptonic CP violation in current and future long baseline oscillation experiments , 2017, 1702.03160.
[348] Dark energy from mass varying neutrinos , 2003, astro-ph/0309800.
[349] Abraham Loeb,et al. Possibility of precise measurement of the cosmological power spectrum with a dedicated survey of 21 cm emission after reionization. , 2008, Physical review letters.
[350] R.Gill,et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects , 2015 .
[351] S. Weinberg. Universal neutrino degeneracy , 1962 .
[352] U. Pen,et al. The GMRT Epoch of Reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z≈ 8.6 , 2010, 1006.1351.
[353] Measurement of neutrino oscillation by the K2K experiment , 2006, hep-ex/0606032.
[354] Forecasting cosmic parameter errors from microwave background anisotropy experiments , 1997, astro-ph/9702100.
[355] K. Scholberg. Supernova signatures of neutrino mass ordering , 2017, 1707.06384.
[356] J. E. Ruhl,et al. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2016, 1603.06522.
[357] Yupeng Yang. Contributions of dark matter annihilation to the global 21 cm spectrum observed by the EDGES experiment , 2018, 1803.05803.
[358] Peter Ade,et al. Exploring cosmic origins with CORE: Cosmological parameters , 2016, 1612.00021.
[359] M. P. Hobson,et al. polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.
[360] S Hatakeyama,et al. First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.
[361] D. Redigolo,et al. Signs of Dark Matter at 21-cm? , 2018, 1803.03091.
[362] W. M. Wood-Vasey,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.
[363] M. Masud,et al. Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments , 2016, 1606.05662.
[364] M. Sakellariadou,et al. On degenerate models of cosmic inflation , 2014, 1406.1947.
[365] Lincoln Greenhill,et al. TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.
[366] J. Hamann,et al. Observational bounds on the cosmic radiation density , 2007, 0705.0440.
[367] A. Slosar,et al. Observables sensitive to absolute neutrino masses. II , 2008, 0805.2517.
[368] J. Shirai. Results and future plans for the KamLAND-Zen experiment , 2017 .
[369] J. Yáñez,et al. Measurement of atmospheric neutrino oscillations with very large volume neutrino telescopes , 2015, 1509.08404.
[370] T. Kitching,et al. Weak lensing forecasts for dark energy, neutrinos and initial conditions , 2009, Annalen der Physik.
[371] Takahiro Nishimichi,et al. REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.
[372] Edward J. Wollack,et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.
[373] F. Šimkovic,et al. Neutrinoless double beta decay and neutrino mass , 2016, 1612.02924.
[374] C. Zhang,et al. Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy , 2012, 1210.3651.
[375] Daniel Thomas,et al. The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.
[376] M. Zaldarriaga,et al. The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos , 2017, 1707.04698.
[377] A. Heavens,et al. Objective Bayesian analysis of neutrino masses and hierarchy , 2018, 1802.09450.
[378] S. Horiuchi,et al. What can be learned from a future supernova neutrino detection , 2017, 1709.01515.
[379] A. Giachero,et al. Searching for Neutrinoless Double-Beta Decay of130Te with CUORE , 2014, 1402.6072.
[380] David N. Spergel,et al. The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel’dovich Effect Selected Cluster Catalog , 2017, 1709.05600.
[381] S. Hannestad. Structure formation with strongly interacting neutrinos—implications for the cosmological neutrino mass bound , 2004, astro-ph/0411475.
[382] J. Lesgourgues,et al. Massive neutrinos and cosmology , 2005, astro-ph/0603494.
[383] S. King,et al. Sensitivities and synergies of DUNE and T2HK , 2016, 1612.07275.
[384] T. Slatyer,et al. Implications of a 21-cm signal for dark matter annihilation and decay , 2018, Physical Review D.
[385] Ashley J. Ross,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.
[386] F. Pandolfi,et al. PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter , 2018, 1808.01892.
[387] J. S. Cushman,et al. Update on the recent progress of the CUORE experiment , 2018, 1808.10342.
[388] K. Kohri,et al. Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations , 2012, 1205.5223.
[389] Adam D. Myers,et al. Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.
[390] T. Slatyer,et al. Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal , 2018, Physical Review D.
[391] Aaron R. Parsons,et al. Constraining cosmology and ionization history with combined 21 cm power spectrum and global signal measurements , 2015, 1510.08815.
[392] Soo-bong Kim. New results from RENO and prospects with RENO-50 , 2014, 1412.2199.
[393] C. Weinheimer,et al. Analysis of simulated data for the KArlsruhe TRItium Neutrino experiment using Bayesian inference , 2011 .
[394] A. Palazzo,et al. Physics reach of DUNE with a light sterile neutrino , 2016, Journal of High Energy Physics.
[395] E. Linder. Exploring the expansion history of the universe. , 2002, Physical review letters.
[396] A. Finoguenov,et al. redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.
[397] A. Gouvea,et al. Sterile neutrino at the Deep Underground Neutrino Experiment , 2015 .
[398] N. Aghanim,et al. Secondary anisotropies of the CMB , 2007, 0711.0518.
[399] E. D. Valentino,et al. Dark radiation and inflationary freedom after Planck 2015 , 2016, 1601.07557.
[400] W. Winter. Atmospheric Neutrino Oscillations for Earth Tomography , 2015, 1511.05154.
[401] D. V. Forero,et al. DUNE sensitivities to the mixing between sterile and tau neutrinos , 2017, Journal of High Energy Physics.
[402] M. Lattanzi,et al. A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling , 2016, 1611.07847.
[403] T. Abel,et al. Reducing noise in cosmological N-body simulations with neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.
[404] J. Wilkerson,et al. Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002--2007 data-taking period , 2009, 0901.2200.
[405] M. Archidiacono,et al. Updated constraints on non-standard neutrino interactions from Planck , 2013, 1311.3873.
[406] J. Climent,et al. A genomic approach to study down syndrome and cancer inverse comorbidity: untangling the chromosome 21 , 2015, Frontiers in Physiology.
[407] T. Weiler,et al. Resonant absorption of cosmic-ray neutrinos by the relic-neutrino background , 1982 .
[408] L. Colombo,et al. Higher neutrino mass allowed if Cold Dark Matter and Dark Energy are coupled , 2008, 0810.0127.
[409] M. Blennow. On the Bayesian approach to neutrino mass ordering , 2013, 1311.3183.
[410] David Schlegel,et al. The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.
[411] L Ioannucci,et al. First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of ^{130}Te. , 2017, Physical review letters.
[412] G. Raffelt,et al. Multiple spectral splits of supernova neutrinos. , 2009, Physical review letters.
[413] K. Schahmaneche,et al. Improved Photometric Calibration of the SNLS and the SDSS Supernova Surveys , 2012, 1212.4864.
[414] R. Nichol,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space , 2016, 1607.03149.
[415] E. D. Valentino,et al. On the robustness of cosmological axion mass limits , 2015, 1503.00911.
[416] F. S. Cafagna,et al. Physics potentials with the second Hyper-Kamiokande detector in Korea , 2016, Progress of Theoretical and Experimental Physics.
[417] R. Nichol,et al. Galaxy bias from the Dark Energy Survey Science Verification data:combining galaxy density maps and weak lensing maps , 2016, 1601.00405.
[418] Stefano Casertano,et al. A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.
[419] Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints , 2006, astro-ph/0604335.
[420] Super-Kamiokande collaboration. Solar neutrino measurements in Super-Kamiokande-I , 2005, hep-ex/0508053.
[421] Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy , 2006, astro-ph/0608681.
[422] Thomas Kitching,et al. Can we measure the neutrino mass hierarchy in the sky , 2010, 1003.5918.
[423] Georg Raffelt,et al. Cosmological mass limits on neutrinos, axions, and other light particles , 2003 .
[424] J. R. Bond,et al. Massive neutrinos and the large-scale structure of the Universe , 1980 .
[425] S. Petcov,et al. Addressing neutrino mixing models with DUNE and T2HK , 2017, 1711.02107.
[426] A. R. Whitney,et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.
[427] Yasaman Farzan,et al. Neutrino Oscillations and Non-standard Interactions , 2017, Front. Phys..
[428] H. Nunokawa,et al. Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments , 2015, 1506.02314.
[429] M. Takada,et al. Impact of massive neutrinos on the nonlinear matter power spectrum. , 2008, Physical review letters.
[430] J. Valle,et al. Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment , 2017, 1711.10318.
[431] Shun Zhou,et al. Constraining sterile neutrinos using reactor neutrino experiments , 2014, 1405.6540.
[432] D. K. Mishra,et al. Search for the sterile neutrino mixing with the ICAL detector at INO , 2016, 1605.08607.
[433] M. Laveder,et al. Model-independent ν¯e short-baseline oscillations from reactor spectral ratios , 2018, Physics Letters B.
[434] M. Misiaszek,et al. Background-free search for neutrinoless double-β decay of 76Ge with GERDA , 2017, Nature.
[435] Gennaro Miele,et al. Relic neutrino decoupling including flavour oscillations , 2005 .
[436] Edward J. Wollack,et al. Survey strategy optimization for the Atacama Cosmology Telescope , 2016, Astronomical Telescopes + Instrumentation.
[437] Karsten M. Heeger,et al. Determining the neutrino mass with cyclotron radiation emission spectroscopy-Project 8 , 2017, 1703.02037.
[438] J. Hamann,et al. Sterile neutrinos with eV masses in cosmology — How disfavoured exactly? , 2011, 1108.4136.
[439] T. Schwetz,et al. Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly , 2017, Journal of High Energy Physics.
[440] M. Ribordy,et al. Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA , 2013, 1303.0758.
[441] L. Vecchi,et al. Neutrino oscillations in dark backgrounds , 2018, Proceedings of The 20th International Workshop on Neutrinos — PoS(NuFACT2018).
[442] M. Viel,et al. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.
[443] M. Chevallier,et al. ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.
[444] B. Alpert,et al. Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment , 2016, 1612.03947.
[445] T. Weiler,et al. Big bang cosmology, relic neutrinos, and absorption of neutrino cosmic rays , 1984 .
[446] Caltech,et al. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves , 2012, 1212.4250.
[447] S. McGaugh. Strong Hydrogen Absorption at Cosmic Dawn: The Signature of a Baryonic Universe , 2018, 1803.02365.
[448] J. Hamann,et al. Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option. , 2010, Physical review letters.
[449] E. Pierpaoli,et al. Constraining massive neutrinos using cosmological 21 cm observations , 2008, 0805.1920.
[450] J. R. Bond,et al. Radical Compression of Cosmic Microwave Background Data , 2000 .
[451] M. Zaldarriaga,et al. Neutrino clustering around spherical dark matter halos , 2013, 1310.6459.
[452] V. Bromm,et al. Baryon-dark matter scattering and first star formation , 2018, Monthly Notices of the Royal Astronomical Society: Letters.
[453] David R. Silva,et al. The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.
[454] Francisco Villaescusa-Navarro,et al. Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.
[455] A. Mitridate,et al. Bounds on Dark Matter decay from 21 cm line , 2018, Journal of Cosmology and Astroparticle Physics.
[456] R. Peccei,et al. Constraints imposed by CP conservation in the presence of pseudoparticles , 1977 .
[457] T. V. Bullard,et al. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory. , 2008, Physical review letters.
[458] S. Ho,et al. Improvement of cosmological neutrino mass bounds , 2016, 1605.04320.
[459] R. Ellis,et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.
[460] Shun Zhou,et al. Nonstandard interaction effects on neutrino parameters at medium-baseline reactor antineutrino experiments , 2013, 1310.5917.
[461] X. Qian,et al. Neutrino Mass Hierarchy , 2015, 1505.01891.
[462] J. Carlson,et al. Neutrino mass hierarchy and stepwise spectral swapping of supernova neutrino flavors. , 2007, Physical review letters.
[463] Yong-Seon Song,et al. Determination of cosmological parameters from cosmic shear data , 2004 .
[464] M. Pac. Recent Results from RENO , 2018, 1801.04049.
[465] N. Gehrels,et al. The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST , 2015, 1501.07897.
[466] G. Raffelt,et al. Adiabaticity and spectral splits in collective neutrino transformations , 2007, 0709.4641.
[467] W. Percival,et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the configuration-space clustering wedges , 2016, 1607.03147.
[468] Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment , 2014, 1409.6970.
[469] S. Weinberg. A new light boson , 1978 .
[470] G. W. Pratt,et al. Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.
[471] R.Gill,et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF , 2016, 1601.02984.
[472] Jonathan R. Pritchard,et al. Eliminating the optical depth nuisance from the CMB with 21 cm cosmology , 2015, 1509.08463.
[473] T. Tsang,et al. nEXO Pre-Conceptual Design Report , 2018, 1805.11142.
[474] A. Melchiorri,et al. Neutrino and dark radiation properties in light of recent CMB observations , 2013, 1303.0143.
[475] T. Kitching,et al. Finding evidence for massive neutrinos using 3D weak lensing , 2008, 0801.4565.
[476] André A. Costa,et al. Interacting dark energy: possible explanation for 21-cm absorption at cosmic dawn , 2018, The European Physical Journal C.
[477] M. Hartz,et al. Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande , 2014, 1502.05199.
[478] G. O. Gann. Physics Potential of an Advanced Scintillation Detector: Introducing THEIA , 2015, 1504.08284.
[479] D. V. Forero,et al. Sizable NSI from the SU(2)L scalar doublet-singlet mixing and the implications in DUNE , 2016, 1608.04719.
[480] J. Lesgourgues,et al. Fast and accurate CMB computations in non-flat FLRW universes , 2013, 1312.2697.
[481] Wei Wang,et al. Sensitivities to charged-current nonstandard neutrino interactions at DUNE , 2016, 1607.00065.
[482] A. Palazzo,et al. Current unknowns in the three-neutrino framework , 2018, Progress in Particle and Nuclear Physics.
[483] G. Lin,et al. Probing dark matter self-interaction in the Sun with IceCube-PINGU , 2014, 1408.5471.
[484] Adam D. Myers,et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.
[485] S. Bird,et al. An efficient implementation of massive neutrinos in non-linear structure formation simulations , 2012, 1209.0461.
[486] T. Schwetz,et al. Cosmology and the neutrino mass ordering , 2016, 1606.04691.
[487] P. Astier,et al. COSMOLOGICAL PARAMETER UNCERTAINTIES FROM SALT-II TYPE IA SUPERNOVA LIGHT CURVE MODELS , 2014, 1401.4065.
[488] C. Giunti,et al. Fundamentals of Neutrino Physics and Astrophysics , 2007 .
[489] F. Wilczek. Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .
[490] José M. Martín-García,et al. Critical Phenomena in Gravitational Collapse , 2007, Living reviews in relativity.
[491] F. Schmidt,et al. Large-Scale Galaxy Bias , 2016, 1611.09787.
[492] Stars as particle-physics laboratories , 1999 .
[493] A. Melchiorri,et al. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation , 2008, 0804.1789.
[494] J. Kristiansen,et al. Dynamical Dark Energy model parameters with or without massive neutrinos , 2009, 0906.4501.
[495] Judd D. Bowman,et al. Constraints on Fundamental Cosmological Parameters with Upcoming Redshifted 21 cm Observations , 2005, astro-ph/0512262.
[496] V. Ceriale. HOLMES: The Electron Capture Decay of 163 Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity: TES detector and array production. , 2016 .
[497] A. Mirizzi,et al. Axion hot dark matter bounds after Planck , 2013, 1307.0615.
[498] A. Babul,et al. A Limit on the Warm Dark Matter Particle Mass from the Redshifted 21 cm Absorption Line , 2018, The Astrophysical Journal.
[499] K. Deepthi,et al. Can nonstandard interactions jeopardize the hierarchy sensitivity of DUNE , 2016, 1612.00784.
[500] V. Belov,et al. Searches for sterile neutrinos at the DANSS experiment , 2018, Proceedings of Neutrino Oscillation Workshop — PoS(NOW2018).
[501] R. Nichol,et al. Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.
[502] Xin Zhang,et al. Gravitational clustering of cosmic relic neutrinos in the Milky Way , 2017, Nature Communications.
[503] Astronomy,et al. Solar neutrino measurements in Super-Kamiokande-II , 2006, 1606.07538.
[504] M. Laveder,et al. Light sterile neutrinos , 2015, 1507.08204.
[505] Tejpreet Singh Golan,et al. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.
[506] Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors , 2003, astro-ph/0303089.
[507] L. Rosenberg,et al. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation. , 2014, Physical review letters.
[508] J. Valle,et al. Zooming in on neutrino oscillations with DUNE , 2018, 1803.10247.
[509] C. Giunti. Light sterile neutrinos and neutrinoless double-beta decay , 2017 .
[510] P. Peebles,et al. Cosmology with a Time Variable Cosmological Constant , 1988 .
[511] G. Majumder,et al. Sensitivity for detection of decay of dark matter particle using ICAL at INO , 2014, 1410.5182.
[512] P. Schneider,et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.
[513] S. Cecchini,et al. Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope , 2012, 1206.0645.
[514] G. Bernardi,et al. HI Epoch of Reionization Arrays , 2012, 1201.1700.
[515] A. Hektor,et al. Constraining primordial black holes with the EDGES 21-cm absorption signal , 2018, Physical Review D.
[516] T. Schwetz,et al. Determination of the neutrino mass ordering by combining PINGU and Daya Bay II , 2013, 1306.3988.
[517] G. Efstathiou. H 0 revisited , 2013, 1311.3461.
[518] The Sno Collaboration. Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory , 2009, 0910.2984.
[519] A. Aurisano,et al. Combined analysis of νμ disappearance and νμ→νe appearance in MINOS using accelerator and atmospheric neutrinos. , 2014, Physical review letters.
[520] C. Lunardini,et al. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential , 2014, 1405.7654.
[521] Y. Dirian,et al. Changing the Bayesian prior: Absolute neutrino mass constraints in nonlocal gravity * , 2017, 1704.04075.
[522] J. Valle,et al. Cornering the revamped BMV model with neutrino oscillation data , 2017, 1708.03290.
[523] G. Hilton,et al. HOLMES: The electron capture decay of 163Ho to measure the electron neutrino mass with sub-eV sensitivity , 2014, 1412.5060.
[524] Earl Lawrence,et al. THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.
[525] M. Laubenstein,et al. Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy , 2013, 1308.0443.
[526] Will Handley,et al. Maximum-Entropy Priors with Derived Parameters in a Specified Distribution , 2018, Entropy.
[527] J. I. Crespo-Anadón,et al. Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.
[528] Cosmological constraints on neutrino plus axion hot dark matter , 2007, 0706.4198.
[529] Rennan Barkana,et al. Possible interaction between baryons and dark-matter particles revealed by the first stars , 2018, Nature.
[530] B. Dutta,et al. 21 cm limits on decaying dark matter and primordial black holes , 2018, Physical Review D.