Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects

The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyze the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering versus the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrino mass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.

[1]  J. Lesgourgues,et al.  Probing neutrino masses with future galaxy redshift surveys , 2004, hep-ph/0403296.

[2]  N. Palanque-Delabrouille,et al.  Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100 , 2017, 1702.03314.

[3]  T. Schwetz,et al.  Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos , 2018, Journal of High Energy Physics.

[4]  Abhilash Mishra,et al.  Inflationary Freedom and Cosmological Neutrino Constraints , 2014, 1401.7022.

[5]  A. Yu. Smirnov,et al.  Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy , 1986 .

[6]  N. Haba,et al.  Heavy neutrino mixing in the T2HK, the T2HKK and an extension of the T2HK with a detector at Oki Islands , 2017, The European Physical Journal C.

[7]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[8]  The IceCube Collaboration Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU) , 2014, 1401.2046.

[9]  S. Petcov,et al.  The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments , 2001, hep-ph/0112074.

[10]  W. M. Wood-Vasey,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.

[11]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[12]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.

[13]  A. Melchiorri,et al.  Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data , 2015, 1507.08665.

[14]  M. Viel,et al.  WEIGHING NEUTRINOS WITH COSMIC NEUTRAL HYDROGEN , 2015, 1507.05102.

[15]  E. Hivon,et al.  Reducing the H0 and σ8 tensions with dark matter-neutrino interactions. , 2017, 1710.02559.

[16]  S. Kim,et al.  Solar neutrino results in Super-Kamiokande-III , 2010, 1010.0118.

[17]  G. Barenboim,et al.  Exploring the intrinsic Lorentz-violating parameters at DUNE , 2018, Physics Letters B.

[18]  Christophe Ringeval,et al.  Background reionization history from omniscopes , 2012, 1208.4277.

[19]  Thibaut Louis,et al.  Towards a cosmological neutrino mass detection , 2015, 1509.07471.

[20]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[21]  B. Yanny,et al.  Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1 , 2017, Monthly Notices of the Royal Astronomical Society.

[22]  P. Coloma Non-standard interactions in propagation at the Deep Underground Neutrino Experiment , 2015, 1511.06357.

[23]  Hirata,et al.  Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.

[24]  J. T. Childers,et al.  Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using sqrt(s)=7 TeV pp collisions with the ATLAS detector , 2011, 1110.2299.

[25]  O. Miranda,et al.  Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study , 2016, 1612.07377.

[26]  Mervyn J. Lynch,et al.  THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.

[27]  Paul J. Steinhardt,et al.  Cosmic Concordance and Quintessence , 1999, astro-ph/9901388.

[28]  S. Borgani,et al.  Neutrino constraints: what large-scale structure and CMB data are telling us? , 2014, 1407.8338.

[29]  A. Cimatti,et al.  Measuring the neutrino mass from future wide galaxy cluster catalogues , 2011, 1112.4810.

[30]  M. Hazumi,et al.  Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations , 2016 .

[31]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[32]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[33]  P. C. de Holanda,et al.  Quantum decoherence effects in neutrino oscillations at DUNE , 2018, Physical Review D.

[34]  Olga Mena,et al.  Cosmic dark radiation and neutrinos , 2013, 1307.0637.

[35]  Neutrino masses and the number of neutrino species from WMAP and 2dFGRS , 2003, astro-ph/0303076.

[36]  V. Domcke,et al.  Detection prospects for the Cosmic Neutrino Background using laser interferometers , 2017, 1703.08629.

[37]  A. Smirnov,et al.  Neutrino Propagation in Matter , 2013, 1306.2903.

[38]  D. Parkinson,et al.  SIMULTANEOUS CONSTRAINTS ON THE NUMBER AND MASS OF RELATIVISTIC SPECIES , 2012, 1210.2131.

[39]  Martin J. Rees,et al.  21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .

[40]  M. Viel,et al.  Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.

[41]  F. Ferrari Extended N=1 super Yang-Mills theories , 2007, 0709.0472.

[42]  S. Ho,et al.  Unveiling $ν$ secrets with cosmological data: neutrino masses and mass hierarchy , 2017, 1701.08172.

[43]  Hannes Jensen,et al.  Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.

[44]  A. Mirizzi,et al.  Role of dense matter in collective supernova neutrino transformations , 2008, 0807.0659.

[45]  Park,et al.  Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.

[46]  O. Mena,et al.  Neutrino masses and their ordering: global data, priors and models , 2018, 1801.04946.

[47]  S. Petcov,et al.  The SNO solar neutrino data, neutrinoless double beta decay and neutrino mass spectrum , 2002, hep-ph/0205022.

[48]  Graeme Smecher,et al.  Calibrating CHIME: a new radio interferometer to probe dark energy , 2014, Astronomical Telescopes and Instrumentation.

[49]  P. Huber,et al.  Hints for Leptonic CP Violation or New Physics? , 2016, Physical review letters.

[50]  W. Percival,et al.  NEW NEUTRINO MASS BOUNDS FROM SDSS-III DATA RELEASE 8 PHOTOMETRIC LUMINOUS GALAXIES , 2012, 1201.1909.

[51]  P. Pasquini,et al.  Shadowing Neutrino Mass Hierarchy with Lorentz Invariance Violation , 2018, 1806.08752.

[52]  J. Lesgourgues,et al.  Cosmology in the era of Euclid and the Square Kilometre Array , 2018, Journal of Cosmology and Astroparticle Physics.

[53]  Limin Wang,et al.  Quintessence, cosmic coincidence, and the cosmological constant , 1999 .

[54]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[55]  A. Slosar,et al.  Measurement of baryon acoustic oscillation correlations at z=2.3 with SDSS DR12 Lya-Forests [Measurements of BAO correlations at z = 2.3 with SDSS DR12 Lyα-Forests] , 2017 .

[56]  C. K. Lee,et al.  Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector , 1998 .

[57]  Columbia,et al.  MassiveNuS: cosmological massive neutrino simulations , 2017, 1711.10524.

[58]  Martin Kilbinger,et al.  Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.

[59]  M. Lattanzi,et al.  Comment on "Strong Evidence for the Normal Neutrino Hierarchy" , 2017, 1703.04585.

[60]  Asantha Cooray,et al.  Cosmological and Astrophysical Parameter Measurements with 21-cm Anisotropies During the Era of Reionization , 2006, astro-ph/0605677.

[61]  A. Melchiorri,et al.  Relic Neutrinos, thermal axions and cosmology in early 2014 , 2014, 1403.4852.

[62]  A. Melchiorri,et al.  Dark radiation sterile neutrino candidates after Planck data , 2013 .

[63]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.

[64]  O. Peres,et al.  Visible neutrino decay at DUNE , 2017, 1705.03599.

[65]  M. Kilbinger,et al.  CFHTLS weak-lensing constraints on the neutrino masses , 2008, 0810.0555.

[66]  G. Dvali,et al.  Small neutrino masses from gravitational θ-term , 2016, 1602.03191.

[67]  R. S. Ward Completely solvable gauge-field equations in dimension greater than four , 1984 .

[68]  W. Percival,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions , 2016, 1607.03148.

[69]  S. Ho,et al.  Impact of neutrino properties on the estimation of inflationary parameters from current and future observations , 2016, 1610.08830.

[70]  S. Choubey,et al.  Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments , 2012, Journal of High Energy Physics.

[71]  M. Lindner,et al.  Series expansions for three-flavor neutrino oscillation probabilities in matter , 2004, hep-ph/0402175.

[72]  Adam D. Myers,et al.  Measurement of baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9 , 2013, 1301.3459.

[73]  J. Farine,et al.  Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory , 2001 .

[74]  M. Decowski,et al.  Constraints on 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND , 2010, 1009.4771.

[75]  M. Agostini,et al.  Discovery probability of next-generation neutrinoless double- β decay experiments , 2017, 1705.02996.

[76]  A. Pope,et al.  Redshift-space distortions in massive neutrino and evolving dark energy cosmologies , 2015, 1506.07526.

[77]  R. Funchal,et al.  Impact of Beyond the Standard Model physics in the detection of the Cosmic Neutrino Background , 2017, Journal of High Energy Physics.

[78]  Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range , 2018, Journal of High Energy Physics.

[79]  S. Hannestad,et al.  Measuring neutrino masses and dark energy with weak lensing tomography , 2006, astro-ph/0603019.

[80]  A. Loeb,et al.  A small amount of mini-charged dark matter could cool the baryons in the early Universe , 2018, Nature.

[81]  S. Hannestad,et al.  Grid based linear neutrino perturbations in cosmological N-body simulations , 2008, 0812.3149.

[82]  S. Choubey,et al.  Neutrino physics with non-standard interactions at INO , 2015, 1507.02211.

[83]  F. Montanari,et al.  Galileon gravity in light of ISW, CMB, BAO and H0 data , 2017, 1707.02263.

[84]  A. Slosar,et al.  Observables sensitive to absolute neutrino masses: A reappraisal after WMAP 3-year and first MINOS results , 2006, hep-ph/0608060.

[85]  Ipmu,et al.  Constraints on Neutrino Masses from Weak Lensing , 2008, 0810.4921.

[86]  M. Viel,et al.  Neutrino signatures on the high-transmission regions of the Lyman $\boldsymbol {\alpha }$ forest , 2011, 1106.2543.

[87]  J. Bartlett,et al.  redMaPPer – III. A detailed comparison of the Planck 2013 and SDSS DR8 redMaPPer cluster catalogues , 2014, 1401.7716.

[88]  G. Holder,et al.  Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn , 2018, 1802.07432.

[89]  Zheng Wang,et al.  Neutrino Physics with JUNO , 2015, 1507.05613.

[90]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[91]  Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double- β decay , 2018, Physical Review C.

[92]  G. Barenboim,et al.  Neutrinos, DUNE and the world best bound on CPT invariance , 2017, 1712.01714.

[93]  A. Goobar,et al.  Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z)≥−1 are tighter than those obtained in ΛCDM , 2018, Physical Review D.

[94]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[95]  A. Aurisano Recent Results from MINOS and MINOS , 2018 .

[96]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low-redshift sample of Data Release 11 , 2014, 1401.1768.

[97]  S. Furlanetto The 21-cm Line as a Probe of Reionization , 2015, 1511.01131.

[98]  J. Lesgourgues,et al.  Physical effects involved in the measurements of neutrino masses with future cosmological data , 2016, 1610.09852.

[99]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[100]  J. Lesgourgues,et al.  Neutrino Cosmology by Julien Lesgourgues , 2013 .

[101]  A. Loeb,et al.  Cosmological constraints from 21cm surveys after reionization , 2008, 0812.0419.

[102]  S. Ho,et al.  Constraints on neutrino masses from Planck and Galaxy clustering data , 2013, 1306.5544.

[103]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[104]  Yi-Fan Wang,et al.  Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample , 2017, 1707.00588.

[105]  L. Price,et al.  Testing for new physics: neutrinos and the primordial power spectrum , 2016, 1606.03057.

[106]  M Busch,et al.  Search for Neutrinoless Double-β Decay in ^{76}Ge with the Majorana Demonstrator. , 2017, Physical review letters.

[107]  Scott Croom,et al.  WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies , 2011, 1112.4940.

[108]  A. Rújula,et al.  Calorimetric measurements of 163holmium decay as tools to determine the electron neutrino mass , 1982 .

[109]  Ny,et al.  Current Status and Future Prospects of the SNO+ Experiment , 2015, 1508.05759.

[110]  J. Valle,et al.  Neutrino oscillations refitted , 2014, 1405.7540.

[111]  M. Lattanzi,et al.  Status of Neutrino Properties and Future Prospects—Cosmological and Astrophysical Constraints , 2017, Front. Phys..

[112]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[113]  A. Melchiorri,et al.  Constraints on massive sterile neutrino species from current and future cosmological data , 2011, 1102.4774.

[114]  Philip Bull,et al.  LATE-TIME COSMOLOGY WITH 21 cm INTENSITY MAPPING EXPERIMENTS , 2014, 1405.1452.

[115]  D. Dutta,et al.  Effect of non-unitarity on neutrino mass hierarchy determination at DUNE, NOνA and T2K , 2016, 1609.07094.

[116]  A. Slosar,et al.  DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.

[117]  M. Viel,et al.  Modeling the neutral hydrogen distribution in the post-reionization Universe: intensity mapping , 2014, 1405.6713.

[118]  W. Hofmann,et al.  The large enriched germanium experiment for neutrinoless double beta decay (LEGEND) , 2017, 1709.01980.

[119]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[120]  David F. Moore,et al.  PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.

[121]  G. Farrar,et al.  Constraints on Dark Matter with a moderately large and velocity-dependent DM-nucleon cross-section , 2018, Journal of Cosmology and Astroparticle Physics.

[122]  J. Valle,et al.  Neutrino oscillations from warped flavor symmetry: predictions for long baseline experiments T2K, NOvA and DUNE , 2016, 1610.05962.

[123]  Martin J. Rees,et al.  The 21-cm line at high redshift: a diagnostic for the origin of large scale structure , 1990 .

[124]  Arka Banerjee,et al.  Simulating nonlinear cosmological structure formation with massive neutrinos , 2016, 1606.06167.

[125]  Cosmology of Mass-Varying Neutrinos Driven by Quintessence: Theory and Observations , 2005, astro-ph/0512367.

[126]  Andrea Giuliani,et al.  Neutrinoless Double-Beta Decay , 2012 .

[127]  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[128]  A preference for a non-zero neutrino mass from cosmological data , 2003, astro-ph/0306386.

[129]  A. Hektor,et al.  The EDGES 21 cm anomaly and properties of dark matter , 2018, Physics Letters B.

[130]  J. J. Bock,et al.  BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization , 2014, Astronomical Telescopes and Instrumentation.

[131]  Abraham Loeb,et al.  21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.

[132]  Matias Zaldarriaga,et al.  Fast Fourier transform telescope , 2008, 0805.4414.

[133]  J.Coleman,et al.  Hyper-Kamiokande Design Report , 2018, 1805.04163.

[134]  Eleonora Di Valentino,et al.  Global constraints on absolute neutrino masses and their ordering , 2017, 1703.04471.

[135]  K. Ichiki,et al.  Neutrino Masses from Cosmological Probes in Interacting Neutrino Dark-Energy Models , 2008, 0803.2274.

[136]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[137]  H. Hoekstra,et al.  KiDS-450: testing extensions to the standard cosmological model , 2016, 1610.04606.

[138]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[139]  Neutrinoless universe. , 2004, Physical review letters.

[140]  Max Tegmark,et al.  Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.

[141]  S. Choubey,et al.  Sensitivity to neutrino decay with atmospheric neutrinos at the INO-ICAL detector , 2017, 1709.10376.

[142]  M. Misiaszek,et al.  Improved Limit on Neutrinoless Double-β Decay of ^{76}Ge from GERDA Phase II. , 2018, Physical review letters.

[143]  W. Rodejohann NEUTRINO-LESS DOUBLE BETA DECAY AND PARTICLE PHYSICS , 2011, 1106.1334.

[144]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[145]  M. B. Gavela,et al.  Dark coupling , 2009, 0901.1611.

[146]  Kris Sigurdson,et al.  Cosmological signatures of interacting neutrinos , 2006 .

[147]  Edward J. Wollack,et al.  Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report , 2013, 1305.5422.

[148]  Dipak Munshi,et al.  Cosmology with weak lensing surveys. , 2005, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[149]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[150]  L. Verde,et al.  Hiding neutrino mass in modified gravity cosmologies , 2016, 1612.02598.

[151]  G.G.Raffelt G.Sigl Self-induced decoherence in dense neutrino gases , 2007, hep-ph/0701182.

[152]  Ole Eggers Bjælde,et al.  Neutrino dark energy—revisiting the stability issue , 2007, 0705.2018.

[153]  arXiv : New Physics in the Rayleigh-Jeans Tail of the CMB , 2018, 1803.07048.

[154]  Yong-Seon Song,et al.  Determining Neutrino Mass from the CMB Alone , 2003, astro-ph/0303344.

[155]  J. Lesgourgues,et al.  Calculation of the local density of relic neutrinos , 2017, 1706.09850.

[156]  Gravitational lensing of supernova neutrinos , 2006, astro-ph/0610918.

[157]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[158]  J. Lesgourgues,et al.  Cosmological parameters from large scale structure - geometric versus shape information , 2010, 1003.3999.

[159]  Stuart Wyithe,et al.  Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts , 2007, 0709.2955.

[160]  H. Haren,et al.  KM3MeT 2.0 Letter of intent for ARCA and ORCA , 2016 .

[161]  Chang Wei Loh,et al.  Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment , 2016, 1610.04802.

[162]  D. Parkinson,et al.  Combining Planck data with large scale structure information gives a strong neutrino mass constraint , 2013, 1306.4153.

[163]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[164]  A. Elagin,et al.  Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator , 2014, 1409.5864.

[165]  Matias Zaldarriaga,et al.  How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.

[166]  Cosmology with massive neutrinos coupled to dark energy. , 2005, Physical review letters.

[167]  Georg G. Raffelt,et al.  Neutrino and axion hot dark matter bounds after WMAP-7 , 2010, 1004.0695.

[168]  K M Heeger,et al.  Search for Neutrinoless Double-Beta Decay of (130)Te with CUORE-0. , 2015, Physical review letters.

[169]  E. Calabrese,et al.  Distinguishing between Neutrinos and time-varying Dark Energy through Cosmic Time , 2017, 1706.00730.

[170]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[171]  D. Schneider,et al.  Measurement of BAO correlations at $z=2.3$ with SDSS DR12 \lya-Forests , 2017, 1702.00176.

[172]  M. Lindner,et al.  Atmospheric trident production for probing new physics , 2017, 1702.02617.

[173]  J. Hill,et al.  ournal of C osmology and A stroparticle hysics Can early dark energy explain EDGES? , 2022 .

[174]  C. Baugh,et al.  Modified gravity with massive neutrinos as a testable alternative cosmological model. , 2014, 1404.1365.

[175]  Lincoln Wolfenstein,et al.  Neutrino Oscillations in Matter , 1978 .

[176]  M. T. Barrera,et al.  First Result on the Neutrinoless Double-β Decay of ^{82}Se with CUPID-0. , 2018, Physical review letters.

[177]  Ashley J. Ross,et al.  The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at Redshift of 0.72 with the DR14 Luminous Red Galaxy Sample , 2017, The Astrophysical Journal.

[178]  Yong-Seon Song,et al.  Determining neutrino mass from the cosmic microwave background alone. , 2003, Physical review letters.

[179]  S. Choubey,et al.  Bounds on Non-Standard Neutrino Interactions Using PINGU , 2014, 1410.0410.

[180]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[181]  A. Cimatti,et al.  Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys , 2010, 1012.2868.

[182]  G. D'Amico,et al.  Bounds on Dark-Matter Annihilations from 21-cm Data. , 2018, Physical review letters.

[183]  Bennett,et al.  Measurement of the neutrino mass using the inner bremsstrahlung emitted in the electron-capture decay of 163Ho. , 1987, Physical review. A, General physics.

[184]  Daniel Thomas,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy correlation function , 2016, 1610.03506.

[185]  B. H. LaRoque,et al.  Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method , 2013, 1309.7093.

[186]  M. Viel,et al.  The effect of neutrinos on the matter distribution as probed by the intergalactic medium , 2010, 1003.2422.

[187]  ournal of C osmology and A stroparticle hysics J The neutrino mass bound from WMAP 3 year data, the baryon acoustic peak, the SNLS supernovae and the Lyman- α forest , 2022 .

[188]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample , 2012, 1203.6594.

[189]  Relic neutrino absorption spectroscopy , 2004, hep-ph/0401203.

[190]  M. Tórtola,et al.  New physics vs new paradigms: distinguishing CPT violation from NSI , 2018, The European Physical Journal C.

[191]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[192]  P. Vogel,et al.  Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei , 2007, 0710.5312.

[193]  S. Joudaki Constraints on Neutrino Mass and Light Degrees of Freedom in Extended Cosmological Parameter Spaces , 2012, 1202.0005.

[194]  A. Falkowski,et al.  21cm absorption signal from charge sequestration , 2018, 1803.10096.

[195]  Jounghun Lee,et al.  Breaking the Cosmic Degeneracy between Modified Gravity and Massive Neutrinos with the Cosmic Web , 2014, 1404.3639.

[196]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[197]  A. Lasenby,et al.  polychord: next-generation nested sampling , 2015, 1506.00171.

[198]  Y. Farzan,et al.  Shedding light on LMA-dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50 , 2014, 1403.0744.

[199]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF , 2015, 1512.06148.

[200]  Va,et al.  Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2011, 1106.5194.

[201]  Ole Eggers Bjælde,et al.  Dark energy and neutrino constraints from a future EUCLID-like survey , 2013 .

[202]  A. Mirizzi,et al.  Cosmological constraints on neutrino plus axion hot dark matter: update after WMAP-5 , 2007, 0803.1585.

[203]  A. Gilbert,et al.  The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.

[204]  M. Archidiacono,et al.  Efficient calculation of cosmological neutrino clustering in the non-linear regime , 2015, 1510.02907.

[205]  A. Ringwald,et al.  Gravitational clustering of relic neutrinos and implications for their detection , 2004, hep-ph/0408241.

[206]  K. Murase New Prospects for Detecting High-Energy Neutrinos from Nearby Supernovae , 2017, 1705.04750.

[207]  S. Hannestad,et al.  νCONCEPT: cosmological neutrino simulations from the non-linear Boltzmann hierarchy , 2017, Journal of Cosmology and Astroparticle Physics.

[208]  David R. DeBoer,et al.  PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM , 2015, 1503.00045.

[209]  A. Palazzo,et al.  Signatures of a light sterile neutrino in T2HK , 2018, Journal of High Energy Physics.

[210]  José W. F. Valle,et al.  Neutrinoless Double beta Decay in SU(2) x U(1) Theories , 1982 .

[211]  Ilian T. Iliev,et al.  On the Direct Detectability of the Cosmic Dark Ages: 21 Centimeter Emission from Minihalos , 2002 .

[212]  F. Simpson,et al.  Strong Bayesian evidence for the normal neutrino hierarchy , 2017, 1703.03425.

[213]  KamLAND-Zen Collaboration,et al.  First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance , 2002 .

[214]  I. Štekl,et al.  Probing new physics models of neutrinoless double beta decay with SuperNEMO , 2010, 1005.1241.

[215]  M. Geller,et al.  The HectoMAP Cluster Survey. II. X-Ray Clusters , 2017, 1712.00029.

[216]  A. Giachero,et al.  CUORE-0 detector: design, construction and operation , 2016, Journal of Instrumentation.

[217]  H. Janka,et al.  Supernova Neutrinos: Production, Oscillations and Detection , 2015, 1508.00785.

[218]  P. Vogel How difficult it would be to detect cosmic neutrino background , 2015 .

[219]  A. Gouvea,et al.  Non-standard neutrino interactions at DUNE , 2015, 1511.05562.

[220]  W. Hampel,et al.  Reanalysis of the GALLEX solar neutrino flux and source experiments , 2010, 1001.2731.

[221]  M. Sorel,et al.  The Search for neutrinoless double beta decay , 2011, 1109.5515.

[222]  O. Mena,et al.  EDGES result versus CMB and low-redshift constraints on ionization histories , 2018, Physical Review D.

[223]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[224]  A. Loeb,et al.  21-cm Fluctuations from Charged Dark Matter. , 2018, Physical review letters.

[225]  M. Morales,et al.  ADDING CONTEXT TO JAMES WEBB SPACE TELESCOPE SURVEYS WITH CURRENT AND FUTURE 21 cm RADIO OBSERVATIONS , 2014, 1410.5427.

[226]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[227]  L. Verde,et al.  Neutrino mass limits: robust information from the power spectrum of galaxy surveys , 2015, 1511.05983.

[228]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[229]  A. Rogers,et al.  A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.

[230]  F. Šimkovic,et al.  Beta Decaying Nuclei as a Probe of Cosmic Neutrino Background , 2011, 1102.1799.

[231]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.

[232]  Animesh Chatterjee,et al.  Probing Lorentz and CPT violation in a magnetized iron detector using atmospheric neutrinos , 2014, 1402.6265.

[233]  A. Cooray Weighing neutrinos: Weak lensing approach , 1999, astro-ph/9904246.

[234]  A. Lewis,et al.  Prospects for constraining neutrino mass using Planck and Lyman-{alpha} forest data , 2007, 0705.3100.

[235]  A. Merle,et al.  Global Bayesian analysis of neutrino mass data , 2017, 1705.01945.

[236]  Neutrino mass limits from SDSS, 2dFGRS and WMAP , 2003, hep-ph/0312065.

[237]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[238]  Y. Qian,et al.  Collective Neutrino Oscillations , 2010, 1001.2799.

[239]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[240]  A. Melchiorri,et al.  Dark radiation sterile neutrino candidates after Planck data , 2013, 1304.5981.

[241]  A. Myers,et al.  Baryon Acoustic Oscillations in the Ly-\alpha\ forest of BOSS quasars , 2012, 1211.2616.

[242]  I. Albuquerque,et al.  Probing velocity dependent self-interacting dark matter with neutrino telescopes , 2017, 1711.02052.

[243]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[244]  E. Rykoff,et al.  redMaPPer II: X-RAY AND SZ PERFORMANCE BENCHMARKS FOR THE SDSS CATALOG , 2013, 1303.3373.

[245]  D. Schneider,et al.  Baryon acoustic oscillations from the complete SDSS-III Ly$\alpha$-quasar cross-correlation function at $z=2.4$ , 2017, 1708.02225.

[246]  D. Schramm,et al.  New physics from supernova 1987A , 1990 .

[247]  J. P. Rodrigues,et al.  Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data , 2014, 1410.7227.

[248]  O. Dor'e,et al.  Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude , 2018, The Astrophysical Journal.

[249]  A. Hopkins,et al.  Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield , 2013, 1307.4738.

[250]  How to Detect Big Bang Relic Neutrinos , 2005, hep-ph/0505024.

[251]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[252]  P. A. R. Ade,et al.  Exploring cosmic origins with CORE: Survey requirements and mission design , 2017, Journal of Cosmology and Astroparticle Physics.

[253]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[254]  K. Blaum,et al.  Direct Measurement of the Mass Difference of $^{163}$Ho and $^{163}$Dy Solves the $Q$-Value Puzzle for the Neutrino Mass Determination , 2015, 1604.04210.

[255]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM , 2011, 1104.2934.

[256]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[257]  L. Moscardini,et al.  Cosmic Degeneracies I: Joint N-body Simulations of Modified Gravity and Massive Neutrinos , 2013, 1311.2588.

[258]  Neutrino mass and dark energy from weak lensing. , 2002, Physical review letters.

[259]  A. Silvestri,et al.  Do current cosmological observations rule out all covariant Galileons , 2017, 1711.04760.

[260]  P. Machado,et al.  Distorted neutrino oscillations from time varying cosmic fields , 2018 .

[261]  The Cupid Interest Group CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification , 2015, 1504.03599.

[262]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[263]  S. Ananthakrishnan The Giant Meterwave Radio Telescope / GMRT , 1995 .

[264]  G. Raffelt,et al.  Self-induced conversion in dense neutrino gases : Pendulum in flavor space , 2006 .

[265]  S. Dodelson,et al.  Neutrino mass priors for cosmology from random matrices , 2017, 1711.08434.

[266]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[267]  J. Valle,et al.  Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity , 2017, Physics Letters B.

[268]  E. Giusarma,et al.  Testing standard and nonstandard neutrino physics with cosmological data , 2012, 1211.2154.

[269]  J. Menendez,et al.  Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review , 2016, Reports on progress in physics. Physical Society.

[270]  Wayne Hu,et al.  Cosmological information from lensed CMB power spectra , 2006 .

[271]  Mattias Blennow,et al.  Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering , 2013, 1311.1822.

[272]  H. Janka Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.

[273]  L. Verde,et al.  Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.

[274]  M. Viel,et al.  Neutrinoless Double Beta Decay: 2015 Review , 2016, 1601.07512.

[275]  O. Mena,et al.  Unified graphical summary of neutrino mixing parameters , 2003, hep-ph/0312131.

[276]  J. Lesgourgues,et al.  Current cosmological bounds on neutrino masses and relativistic relics , 2004, hep-ph/0402049.

[277]  A. Myers,et al.  The one-dimensional Lyα forest power spectrum from BOSS , 2013, 1306.5896.

[278]  Martin J. Rees,et al.  Radio Signatures of H I at High Redshift: Mapping the End of the “Dark Ages” , 2000 .

[279]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[280]  D. York,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample , 2012, 1211.3741.

[281]  B. Han,et al.  Sterile Neutrino Search at the NEOS Experiment. , 2016, Physical review letters.

[282]  J. Harnois-Déraps,et al.  Precision reconstruction of the cold dark matter-neutrino relative velocity from N -body simulations , 2015, 1503.07480.

[283]  D. Hooper,et al.  Severely Constraining Dark-Matter Interpretations of the 21-cm Anomaly. , 2018, Physical review letters.

[284]  Prospect for Relic Neutrino Searches , 2004, hep-ph/0412305.

[285]  Paul J. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1998 .

[286]  S. R. Kim,et al.  Technical Design Report for the AMoRE $0νββ$ Decay Search Experiment , 2015 .

[287]  J. Lesgourgues,et al.  Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors , 2012, 1210.2194.

[288]  M. Hartz,et al.  Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV , 2017, 1710.09126.

[289]  Probing the epoch of early baryonic infall through 21-cm fluctuations , 2005, astro-ph/0502083.

[290]  Ue-Li Pen,et al.  Baryon acoustic oscillation intensity mapping of dark energy. , 2007, Physical review letters.

[291]  Calatayud Cadenillas,et al.  Matter effects in neutrino visible decay at future long-baseline experiments , 2018 .

[292]  M. Dolan,et al.  Increasing Neff with particles in thermal equilibrium with neutrinos , 2012, 1207.0497.

[293]  S. Inoue,et al.  Probing small-scale cosmological fluctuations with the 21 cm forest: Effects of neutrino mass, running spectral index, and warm dark matter , 2014, 1403.1605.

[294]  V. S. Subrahmanyam,et al.  Invited review: Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO) , 2015, 1505.07380.

[295]  A. Gouvea,et al.  Neutrino versus antineutrino oscillation parameters at DUNE and Hyper-Kamiokande experiments , 2017, 1709.06090.

[296]  A. Melchiorri,et al.  Cosmological limits on neutrino unknowns versus low redshift priors , 2015, 1511.00975.

[297]  K. Whisnant,et al.  Nonstandard interactions in solar neutrino oscillations with Hyper-Kamiokande and JUNO , 2017, 1704.04711.

[298]  Scoap Sensitivity of NEXT-100 to neutrinoless double beta decay , 2016 .

[299]  Julian B. Muñoz,et al.  Efficient computation of galaxy bias with neutrinos and other relics , 2018, Physical Review D.

[300]  J. Hamann,et al.  Measuring neutrino masses with a future galaxy survey , 2012, 1209.1043.

[301]  The Cosmon model for an asymptotically vanishing time dependent cosmological 'constant' , 1994, hep-th/9408025.

[302]  A. Heavens,et al.  Determining the Neutrino Mass Hierarchy with Cosmology , 2009, 0907.1917.

[303]  W. Sutherland The CMB neutrino mass / vacuum energy degeneracy: a simple derivation of the degeneracy slopes , 2018, 1803.02298.

[304]  S. Choubey,et al.  A study of invisible neutrino decay at DUNE and its effects on θ23 measurement , 2017, 1705.05820.

[305]  Yun Chen,et al.  Galaxy clustering, CMB and supernova data constraints on ϕ CDM model with massive neutrinos , 2015, 1507.02008.

[306]  A. Melchiorri,et al.  Cosmological and astrophysical neutrino mass measurements , 2011, 1103.5083.

[307]  G. Raffelt,et al.  Decoherence in supernova neutrino transformations suppressed by deleptonization , 2007, 0706.2498.

[308]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.

[309]  J. Hamann,et al.  Cosmology seeking friendship with sterile neutrinos , 2010, 1006.5276.

[310]  A. Loeb,et al.  A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.

[311]  S. Borgani,et al.  Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters , 2013, 1311.1514.

[312]  A. Mirizzi,et al.  Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos , 2010, 1002.2943.

[313]  Steen Hannestad Neutrino masses and the dark energy equation of state: relaxing the cosmological neutrino mass bound. , 2005, Physical review letters.

[314]  J. Farine,et al.  Measurement of the rate of νe+d → p+p+e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory , 2002 .

[315]  C. Giunti,et al.  Predictions for neutrinoless double-beta decay in the 3+1 sterile neutrino scenario , 2015, 1505.00978.

[316]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[317]  C. Lunardini,et al.  Probing the neutrino mass hierarchy and the 13-mixing with supernovae , 2003, hep-ph/0302033.

[318]  G. Salamanna,et al.  A new way to determine the neutrino mass hierarchy at reactors , 2017, 1707.07651.

[319]  Massive neutrinos in cosmology: Analytic solutions and fluid approximation , 2010 .

[320]  E. Lisi,et al.  PINGU and the neutrino mass hierarchy: Statistical and systematic aspects , 2015, 1503.01999.

[321]  A. Slosar,et al.  Improved cosmological bound on the thermal axion mass , 2007, 0705.2695.

[322]  Oliver Zahn,et al.  CMB Lensing Constraints on Neutrinos and Dark Energy , 2009, 0901.0916.

[323]  Shaun A. Thomas,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.

[324]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[325]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[326]  Y. S. Tsai,et al.  The impact of EDGES 21-cm data on dark matter interactions , 2018, Physics Letters B.

[327]  A. Mirizzi,et al.  Signatures of collective and matter effects on supernova neutrinos at large detectors , 2010, 1008.0308.

[328]  Stephan Aune,et al.  PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers , 2016, 1610.08883.

[329]  Adam D. Myers,et al.  Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations , 2013, 1311.1767.

[330]  H. W. Wang,et al.  Study of Rare Nuclear Processes with CUORE , 2018, 1801.05403.

[331]  Aviad Cohen,et al.  Constraining Baryon-Dark-Matter Scattering with the Cosmic Dawn 21-cm Signal. , 2018, Physical review letters.

[332]  V. Pettorino,et al.  Neutrino clustering in growing neutrino quintessence , 2008, 0802.1515.

[333]  Hiranya V. Peiris,et al.  Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization , 2015, 1509.06770.

[334]  M. Weber,et al.  Search for Majorana neutrinos with the first two years of EXO-200 data , 2014, Nature.

[335]  Neutrino mass spectrum and future beta decay experiments , 2001, hep-ph/0105105.

[336]  F. Šimkovic,et al.  Theory of neutrinoless double-beta decay , 2012, Reports on progress in physics. Physical Society.

[337]  S. Choubey,et al.  Prospects of indirect searches for dark matter at INO , 2017, 1711.02546.

[338]  K. Scholberg,et al.  Supernova neutrino detection , 2000, 1205.6003.

[339]  J. Lesgourgues,et al.  Neutrino masses and cosmology with Lyman-alpha forest power spectrum , 2015, 1506.05976.

[340]  J. Lesgourgues,et al.  Probing neutrino masses with CMB lensing extraction , 2006 .

[341]  V. Volchenko,et al.  Possible Detection of a Neutrino Signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research , 1987 .

[342]  J. Lesgourgues,et al.  Neutrino Mass from Cosmology , 2012, 1212.6154.

[343]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[344]  Yu-Feng Li Detection Prospects of the Cosmic Neutrino Background , 2015, 1504.03966.

[345]  S. Ho,et al.  Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses , 2018, Physical Review D.

[346]  F. Weiss Pancreatic cancer risk in hereditary pancreatitis , 2014, Front. Physiol..

[347]  J. Valle,et al.  Probing atmospheric mixing and leptonic CP violation in current and future long baseline oscillation experiments , 2017, 1702.03160.

[348]  Dark energy from mass varying neutrinos , 2003, astro-ph/0309800.

[349]  Abraham Loeb,et al.  Possibility of precise measurement of the cosmological power spectrum with a dedicated survey of 21 cm emission after reionization. , 2008, Physical review letters.

[350]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects , 2015 .

[351]  S. Weinberg Universal neutrino degeneracy , 1962 .

[352]  U. Pen,et al.  The GMRT Epoch of Reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z≈ 8.6 , 2010, 1006.1351.

[353]  Measurement of neutrino oscillation by the K2K experiment , 2006, hep-ex/0606032.

[354]  Forecasting cosmic parameter errors from microwave background anisotropy experiments , 1997, astro-ph/9702100.

[355]  K. Scholberg Supernova signatures of neutrino mass ordering , 2017, 1707.06384.

[356]  J. E. Ruhl,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2016, 1603.06522.

[357]  Yupeng Yang Contributions of dark matter annihilation to the global 21 cm spectrum observed by the EDGES experiment , 2018, 1803.05803.

[358]  Peter Ade,et al.  Exploring cosmic origins with CORE: Cosmological parameters , 2016, 1612.00021.

[359]  M. P. Hobson,et al.  polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.

[360]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[361]  D. Redigolo,et al.  Signs of Dark Matter at 21-cm? , 2018, 1803.03091.

[362]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[363]  M. Masud,et al.  Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments , 2016, 1606.05662.

[364]  M. Sakellariadou,et al.  On degenerate models of cosmic inflation , 2014, 1406.1947.

[365]  Lincoln Greenhill,et al.  TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.

[366]  J. Hamann,et al.  Observational bounds on the cosmic radiation density , 2007, 0705.0440.

[367]  A. Slosar,et al.  Observables sensitive to absolute neutrino masses. II , 2008, 0805.2517.

[368]  J. Shirai Results and future plans for the KamLAND-Zen experiment , 2017 .

[369]  J. Yáñez,et al.  Measurement of atmospheric neutrino oscillations with very large volume neutrino telescopes , 2015, 1509.08404.

[370]  T. Kitching,et al.  Weak lensing forecasts for dark energy, neutrinos and initial conditions , 2009, Annalen der Physik.

[371]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[372]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[373]  F. Šimkovic,et al.  Neutrinoless double beta decay and neutrino mass , 2016, 1612.02924.

[374]  C. Zhang,et al.  Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy , 2012, 1210.3651.

[375]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[376]  M. Zaldarriaga,et al.  The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos , 2017, 1707.04698.

[377]  A. Heavens,et al.  Objective Bayesian analysis of neutrino masses and hierarchy , 2018, 1802.09450.

[378]  S. Horiuchi,et al.  What can be learned from a future supernova neutrino detection , 2017, 1709.01515.

[379]  A. Giachero,et al.  Searching for Neutrinoless Double-Beta Decay of130Te with CUORE , 2014, 1402.6072.

[380]  David N. Spergel,et al.  The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel’dovich Effect Selected Cluster Catalog , 2017, 1709.05600.

[381]  S. Hannestad Structure formation with strongly interacting neutrinos—implications for the cosmological neutrino mass bound , 2004, astro-ph/0411475.

[382]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[383]  S. King,et al.  Sensitivities and synergies of DUNE and T2HK , 2016, 1612.07275.

[384]  T. Slatyer,et al.  Implications of a 21-cm signal for dark matter annihilation and decay , 2018, Physical Review D.

[385]  Ashley J. Ross,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.

[386]  F. Pandolfi,et al.  PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter , 2018, 1808.01892.

[387]  J. S. Cushman,et al.  Update on the recent progress of the CUORE experiment , 2018, 1808.10342.

[388]  K. Kohri,et al.  Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations , 2012, 1205.5223.

[389]  Adam D. Myers,et al.  Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.

[390]  T. Slatyer,et al.  Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal , 2018, Physical Review D.

[391]  Aaron R. Parsons,et al.  Constraining cosmology and ionization history with combined 21 cm power spectrum and global signal measurements , 2015, 1510.08815.

[392]  Soo-bong Kim New results from RENO and prospects with RENO-50 , 2014, 1412.2199.

[393]  C. Weinheimer,et al.  Analysis of simulated data for the KArlsruhe TRItium Neutrino experiment using Bayesian inference , 2011 .

[394]  A. Palazzo,et al.  Physics reach of DUNE with a light sterile neutrino , 2016, Journal of High Energy Physics.

[395]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[396]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[397]  A. Gouvea,et al.  Sterile neutrino at the Deep Underground Neutrino Experiment , 2015 .

[398]  N. Aghanim,et al.  Secondary anisotropies of the CMB , 2007, 0711.0518.

[399]  E. D. Valentino,et al.  Dark radiation and inflationary freedom after Planck 2015 , 2016, 1601.07557.

[400]  W. Winter Atmospheric Neutrino Oscillations for Earth Tomography , 2015, 1511.05154.

[401]  D. V. Forero,et al.  DUNE sensitivities to the mixing between sterile and tau neutrinos , 2017, Journal of High Energy Physics.

[402]  M. Lattanzi,et al.  A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling , 2016, 1611.07847.

[403]  T. Abel,et al.  Reducing noise in cosmological N-body simulations with neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.

[404]  J. Wilkerson,et al.  Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002--2007 data-taking period , 2009, 0901.2200.

[405]  M. Archidiacono,et al.  Updated constraints on non-standard neutrino interactions from Planck , 2013, 1311.3873.

[406]  J. Climent,et al.  A genomic approach to study down syndrome and cancer inverse comorbidity: untangling the chromosome 21 , 2015, Frontiers in Physiology.

[407]  T. Weiler,et al.  Resonant absorption of cosmic-ray neutrinos by the relic-neutrino background , 1982 .

[408]  L. Colombo,et al.  Higher neutrino mass allowed if Cold Dark Matter and Dark Energy are coupled , 2008, 0810.0127.

[409]  M. Blennow On the Bayesian approach to neutrino mass ordering , 2013, 1311.3183.

[410]  David Schlegel,et al.  The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.

[411]  L Ioannucci,et al.  First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of ^{130}Te. , 2017, Physical review letters.

[412]  G. Raffelt,et al.  Multiple spectral splits of supernova neutrinos. , 2009, Physical review letters.

[413]  K. Schahmaneche,et al.  Improved Photometric Calibration of the SNLS and the SDSS Supernova Surveys , 2012, 1212.4864.

[414]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space , 2016, 1607.03149.

[415]  E. D. Valentino,et al.  On the robustness of cosmological axion mass limits , 2015, 1503.00911.

[416]  F. S. Cafagna,et al.  Physics potentials with the second Hyper-Kamiokande detector in Korea , 2016, Progress of Theoretical and Experimental Physics.

[417]  R. Nichol,et al.  Galaxy bias from the Dark Energy Survey Science Verification data:combining galaxy density maps and weak lensing maps , 2016, 1601.00405.

[418]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[419]  Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints , 2006, astro-ph/0604335.

[420]  Super-Kamiokande collaboration Solar neutrino measurements in Super-Kamiokande-I , 2005, hep-ex/0508053.

[421]  Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy , 2006, astro-ph/0608681.

[422]  Thomas Kitching,et al.  Can we measure the neutrino mass hierarchy in the sky , 2010, 1003.5918.

[423]  Georg Raffelt,et al.  Cosmological mass limits on neutrinos, axions, and other light particles , 2003 .

[424]  J. R. Bond,et al.  Massive neutrinos and the large-scale structure of the Universe , 1980 .

[425]  S. Petcov,et al.  Addressing neutrino mixing models with DUNE and T2HK , 2017, 1711.02107.

[426]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[427]  Yasaman Farzan,et al.  Neutrino Oscillations and Non-standard Interactions , 2017, Front. Phys..

[428]  H. Nunokawa,et al.  Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments , 2015, 1506.02314.

[429]  M. Takada,et al.  Impact of massive neutrinos on the nonlinear matter power spectrum. , 2008, Physical review letters.

[430]  J. Valle,et al.  Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment , 2017, 1711.10318.

[431]  Shun Zhou,et al.  Constraining sterile neutrinos using reactor neutrino experiments , 2014, 1405.6540.

[432]  D. K. Mishra,et al.  Search for the sterile neutrino mixing with the ICAL detector at INO , 2016, 1605.08607.

[433]  M. Laveder,et al.  Model-independent ν¯e short-baseline oscillations from reactor spectral ratios , 2018, Physics Letters B.

[434]  M. Misiaszek,et al.  Background-free search for neutrinoless double-β decay of 76Ge with GERDA , 2017, Nature.

[435]  Gennaro Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005 .

[436]  Edward J. Wollack,et al.  Survey strategy optimization for the Atacama Cosmology Telescope , 2016, Astronomical Telescopes + Instrumentation.

[437]  Karsten M. Heeger,et al.  Determining the neutrino mass with cyclotron radiation emission spectroscopy-Project 8 , 2017, 1703.02037.

[438]  J. Hamann,et al.  Sterile neutrinos with eV masses in cosmology — How disfavoured exactly? , 2011, 1108.4136.

[439]  T. Schwetz,et al.  Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly , 2017, Journal of High Energy Physics.

[440]  M. Ribordy,et al.  Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA , 2013, 1303.0758.

[441]  L. Vecchi,et al.  Neutrino oscillations in dark backgrounds , 2018, Proceedings of The 20th International Workshop on Neutrinos — PoS(NuFACT2018).

[442]  M. Viel,et al.  Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.

[443]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[444]  B. Alpert,et al.  Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment , 2016, 1612.03947.

[445]  T. Weiler,et al.  Big bang cosmology, relic neutrinos, and absorption of neutrino cosmic rays , 1984 .

[446]  Caltech,et al.  Core-Collapse Supernovae, Neutrinos, and Gravitational Waves , 2012, 1212.4250.

[447]  S. McGaugh Strong Hydrogen Absorption at Cosmic Dawn: The Signature of a Baryonic Universe , 2018, 1803.02365.

[448]  J. Hamann,et al.  Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option. , 2010, Physical review letters.

[449]  E. Pierpaoli,et al.  Constraining massive neutrinos using cosmological 21 cm observations , 2008, 0805.1920.

[450]  J. R. Bond,et al.  Radical Compression of Cosmic Microwave Background Data , 2000 .

[451]  M. Zaldarriaga,et al.  Neutrino clustering around spherical dark matter halos , 2013, 1310.6459.

[452]  V. Bromm,et al.  Baryon-dark matter scattering and first star formation , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[453]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[454]  Francisco Villaescusa-Navarro,et al.  Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.

[455]  A. Mitridate,et al.  Bounds on Dark Matter decay from 21 cm line , 2018, Journal of Cosmology and Astroparticle Physics.

[456]  R. Peccei,et al.  Constraints imposed by CP conservation in the presence of pseudoparticles , 1977 .

[457]  T. V. Bullard,et al.  Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory. , 2008, Physical review letters.

[458]  S. Ho,et al.  Improvement of cosmological neutrino mass bounds , 2016, 1605.04320.

[459]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[460]  Shun Zhou,et al.  Nonstandard interaction effects on neutrino parameters at medium-baseline reactor antineutrino experiments , 2013, 1310.5917.

[461]  X. Qian,et al.  Neutrino Mass Hierarchy , 2015, 1505.01891.

[462]  J. Carlson,et al.  Neutrino mass hierarchy and stepwise spectral swapping of supernova neutrino flavors. , 2007, Physical review letters.

[463]  Yong-Seon Song,et al.  Determination of cosmological parameters from cosmic shear data , 2004 .

[464]  M. Pac Recent Results from RENO , 2018, 1801.04049.

[465]  N. Gehrels,et al.  The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST , 2015, 1501.07897.

[466]  G. Raffelt,et al.  Adiabaticity and spectral splits in collective neutrino transformations , 2007, 0709.4641.

[467]  W. Percival,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the configuration-space clustering wedges , 2016, 1607.03147.

[468]  Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment , 2014, 1409.6970.

[469]  S. Weinberg A new light boson , 1978 .

[470]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[471]  R.Gill,et al.  Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF , 2016, 1601.02984.

[472]  Jonathan R. Pritchard,et al.  Eliminating the optical depth nuisance from the CMB with 21 cm cosmology , 2015, 1509.08463.

[473]  T. Tsang,et al.  nEXO Pre-Conceptual Design Report , 2018, 1805.11142.

[474]  A. Melchiorri,et al.  Neutrino and dark radiation properties in light of recent CMB observations , 2013, 1303.0143.

[475]  T. Kitching,et al.  Finding evidence for massive neutrinos using 3D weak lensing , 2008, 0801.4565.

[476]  André A. Costa,et al.  Interacting dark energy: possible explanation for 21-cm absorption at cosmic dawn , 2018, The European Physical Journal C.

[477]  M. Hartz,et al.  Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande , 2014, 1502.05199.

[478]  G. O. Gann Physics Potential of an Advanced Scintillation Detector: Introducing THEIA , 2015, 1504.08284.

[479]  D. V. Forero,et al.  Sizable NSI from the SU(2)L scalar doublet-singlet mixing and the implications in DUNE , 2016, 1608.04719.

[480]  J. Lesgourgues,et al.  Fast and accurate CMB computations in non-flat FLRW universes , 2013, 1312.2697.

[481]  Wei Wang,et al.  Sensitivities to charged-current nonstandard neutrino interactions at DUNE , 2016, 1607.00065.

[482]  A. Palazzo,et al.  Current unknowns in the three-neutrino framework , 2018, Progress in Particle and Nuclear Physics.

[483]  G. Lin,et al.  Probing dark matter self-interaction in the Sun with IceCube-PINGU , 2014, 1408.5471.

[484]  Adam D. Myers,et al.  Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars , 2014, 1404.1801.

[485]  S. Bird,et al.  An efficient implementation of massive neutrinos in non-linear structure formation simulations , 2012, 1209.0461.

[486]  T. Schwetz,et al.  Cosmology and the neutrino mass ordering , 2016, 1606.04691.

[487]  P. Astier,et al.  COSMOLOGICAL PARAMETER UNCERTAINTIES FROM SALT-II TYPE IA SUPERNOVA LIGHT CURVE MODELS , 2014, 1401.4065.

[488]  C. Giunti,et al.  Fundamentals of Neutrino Physics and Astrophysics , 2007 .

[489]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[490]  José M. Martín-García,et al.  Critical Phenomena in Gravitational Collapse , 2007, Living reviews in relativity.

[491]  F. Schmidt,et al.  Large-Scale Galaxy Bias , 2016, 1611.09787.

[492]  Stars as particle-physics laboratories , 1999 .

[493]  A. Melchiorri,et al.  Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation , 2008, 0804.1789.

[494]  J. Kristiansen,et al.  Dynamical Dark Energy model parameters with or without massive neutrinos , 2009, 0906.4501.

[495]  Judd D. Bowman,et al.  Constraints on Fundamental Cosmological Parameters with Upcoming Redshifted 21 cm Observations , 2005, astro-ph/0512262.

[496]  V. Ceriale HOLMES: The Electron Capture Decay of 163 Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity: TES detector and array production. , 2016 .

[497]  A. Mirizzi,et al.  Axion hot dark matter bounds after Planck , 2013, 1307.0615.

[498]  A. Babul,et al.  A Limit on the Warm Dark Matter Particle Mass from the Redshifted 21 cm Absorption Line , 2018, The Astrophysical Journal.

[499]  K. Deepthi,et al.  Can nonstandard interactions jeopardize the hierarchy sensitivity of DUNE , 2016, 1612.00784.

[500]  V. Belov,et al.  Searches for sterile neutrinos at the DANSS experiment , 2018, Proceedings of Neutrino Oscillation Workshop — PoS(NOW2018).

[501]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[502]  Xin Zhang,et al.  Gravitational clustering of cosmic relic neutrinos in the Milky Way , 2017, Nature Communications.

[503]  Astronomy,et al.  Solar neutrino measurements in Super-Kamiokande-II , 2006, 1606.07538.

[504]  M. Laveder,et al.  Light sterile neutrinos , 2015, 1507.08204.

[505]  Tejpreet Singh Golan,et al.  Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.

[506]  Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors , 2003, astro-ph/0303089.

[507]  L. Rosenberg,et al.  Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation. , 2014, Physical review letters.

[508]  J. Valle,et al.  Zooming in on neutrino oscillations with DUNE , 2018, 1803.10247.

[509]  C. Giunti Light sterile neutrinos and neutrinoless double-beta decay , 2017 .

[510]  P. Peebles,et al.  Cosmology with a Time Variable Cosmological Constant , 1988 .

[511]  G. Majumder,et al.  Sensitivity for detection of decay of dark matter particle using ICAL at INO , 2014, 1410.5182.

[512]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[513]  S. Cecchini,et al.  Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope , 2012, 1206.0645.

[514]  G. Bernardi,et al.  HI Epoch of Reionization Arrays , 2012, 1201.1700.

[515]  A. Hektor,et al.  Constraining primordial black holes with the EDGES 21-cm absorption signal , 2018, Physical Review D.

[516]  T. Schwetz,et al.  Determination of the neutrino mass ordering by combining PINGU and Daya Bay II , 2013, 1306.3988.

[517]  G. Efstathiou H 0 revisited , 2013, 1311.3461.

[518]  The Sno Collaboration Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory , 2009, 0910.2984.

[519]  A. Aurisano,et al.  Combined analysis of νμ disappearance and νμ→νe appearance in MINOS using accelerator and atmospheric neutrinos. , 2014, Physical review letters.

[520]  C. Lunardini,et al.  Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential , 2014, 1405.7654.

[521]  Y. Dirian,et al.  Changing the Bayesian prior: Absolute neutrino mass constraints in nonlocal gravity * , 2017, 1704.04075.

[522]  J. Valle,et al.  Cornering the revamped BMV model with neutrino oscillation data , 2017, 1708.03290.

[523]  G. Hilton,et al.  HOLMES: The electron capture decay of 163Ho to measure the electron neutrino mass with sub-eV sensitivity , 2014, 1412.5060.

[524]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[525]  M. Laubenstein,et al.  Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy , 2013, 1308.0443.

[526]  Will Handley,et al.  Maximum-Entropy Priors with Derived Parameters in a Specified Distribution , 2018, Entropy.

[527]  J. I. Crespo-Anadón,et al.  Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.

[528]  Cosmological constraints on neutrino plus axion hot dark matter , 2007, 0706.4198.

[529]  Rennan Barkana,et al.  Possible interaction between baryons and dark-matter particles revealed by the first stars , 2018, Nature.

[530]  B. Dutta,et al.  21 cm limits on decaying dark matter and primordial black holes , 2018, Physical Review D.