Advantages and pitfalls in 3T MR brain imaging: a pictorial review.

From its very beginning, MR as an imaging method suffered from inherently low signal intensity. A typical way to compensate for low signal intensity is the repetition of measurements, which causes long imaging times. Besides that, a variety of different approaches are used to increase signal

[1]  Klinische MRT bei 3 Tesla: Aktueller Stand , 2003, Der Radiologe.

[2]  Y. Itoyama,et al.  Silent Cerebral Microbleeds on T2*-Weighted MRI: Correlation with Stroke Subtype, Stroke Recurrence, and Leukoaraiosis , 2002, Stroke.

[3]  M. L. Lauzon,et al.  Magnetic Resonance Imaging at 3.0 Tesla: Challenges and Advantages in Clinical Neurological Imaging , 2003, Investigative radiology.

[4]  A. Wilman,et al.  Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. , 2002, Magnetic resonance imaging.

[5]  J. Carlson,et al.  Partial flip angle MR imaging. , 1987, Radiology.

[6]  H. Lanfermann,et al.  Comparison of intracranial 3D‐ToF‐MRA with and without parallel acquisition techniques at 1.5t and 3.0t: preliminary results , 2004, Acta radiologica.

[7]  M. Griswold,et al.  [Feasibilities and limitations of high field parallel MRI]. , 2004, Der Radiologe.

[8]  A. Aschoff,et al.  Enhancing gray-to-white matter contrast in 3T T1 spin-echo brain scans by optimizing flip angle. , 2005, AJNR. American journal of neuroradiology.

[9]  Peter Andersen,et al.  Proton T2 relaxation study of water, N‐acetylaspartate, and creatine in human brain using Hahn and Carr‐Purcell spin echoes at 4T and 7T , 2002, Magnetic resonance in medicine.

[10]  W. Bradley,et al.  MRI: The Basics , 1997 .

[11]  X Golay,et al.  Comparison of the dependence of blood R2 and R  2* on oxygen saturation at 1.5 and 4.7 Tesla , 2003, Magnetic resonance in medicine.

[12]  M. Bernstein,et al.  High‐resolution intracranial and cervical MRA at 3.0T: Technical considerations and initial experience , 2001, Magnetic resonance in medicine.

[13]  Robin M Heidemann,et al.  SMASH, SENSE, PILS, GRAPPA: How to Choose the Optimal Method , 2004, Topics in magnetic resonance imaging : TMRI.

[14]  R. Felix,et al.  [Rapid magnetic resonance tomography sequences--theoretical principles and clinical imaging characteristics]. , 1988, Digitale Bilddiagnostik.

[15]  M. Bock,et al.  Hyperpolarized gases--a new type of MR contrast agents? , 1997, Acta radiologica. Supplementum.

[16]  K. Uğurbil,et al.  Transmit and receive transmission line arrays for 7 Tesla parallel imaging , 2005, Magnetic resonance in medicine.

[17]  K. Scheffler,et al.  Hyperechoes , 2001, Magnetic resonance in medicine.

[18]  H. D. Morris,et al.  K‐space in the clinic , 2004, Journal of magnetic resonance imaging : JMRI.

[19]  Klaas P Pruessmann,et al.  Parallel Imaging at High Field Strength: Synergies and Joint Potential , 2004, Topics in magnetic resonance imaging : TMRI.

[20]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[21]  Möglichkeiten und Grenzen der parallelen MRT im Hochfeld , 2004, Der Radiologe.

[22]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[23]  W. Happer,et al.  Biological magnetic resonance imaging using laser-polarized 129Xe , 1994, Nature.

[24]  Fritz Schick,et al.  Whole-body MRI at high field: technical limits and clinical potential , 2005, European Radiology.

[25]  F. Schick,et al.  MR Visualization of the Inner Ear Structures: Comparison of 1.5 Tesla and 3 Tesla Images , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[26]  K. Uğurbil,et al.  Efficient high‐frequency body coil for high‐field MRI , 2004, Magnetic resonance in medicine.

[27]  Dae-Shik Kim,et al.  High-field magnetic resonance techniques for brain research , 2003, Current Opinion in Neurobiology.

[28]  P. Pattany 3T MR imaging: the pros and cons. , 2004, AJNR. American journal of neuroradiology.

[29]  Jeffrey S Ross The high-field-strength curmudgeon. , 2004, AJNR. American journal of neuroradiology.

[30]  David Atkinson,et al.  Artifact Reduction Using Parallel Imaging Methods , 2004, Topics in magnetic resonance imaging : TMRI.

[31]  Xiaoping Hu,et al.  Advances in high-field magnetic resonance imaging. , 2004, Annual review of biomedical engineering.

[32]  Cornelius Weiller,et al.  Functional magnetic resonance imaging: A review of methodological aspects and clinical applications , 2003, Journal of magnetic resonance imaging : JMRI.

[33]  K Ugurbil,et al.  High spatial resolution functional magnetic resonance imaging at very-high-magnetic field. , 1999, Topics in magnetic resonance imaging : TMRI.

[34]  L. Hedlund,et al.  MR Imaging with Hyperpolarized 3He Gas , 1995, Magnetic resonance in medicine.

[35]  Renxin Chu,et al.  Magnetic Resonance in Medicine 51:22–26 (2004) Signal-to-Noise Ratio and Parallel Imaging Performance of a 16-Channel Receive-Only Brain Coil Array at , 2022 .

[36]  J. Gilmore,et al.  Practical consideration for 3T imaging. , 2003, Magnetic resonance imaging clinics of North America.

[37]  Stephen J Riederer,et al.  3.0‐Tesla MR angiography of intracranial aneurysms: Comparison of time‐of‐flight and contrast‐enhanced techniques , 2005, Journal of magnetic resonance imaging : JMRI.

[38]  D. Hoult Sensitivity and Power Deposition in a High‐Field Imaging Experiment , 2000, Journal of magnetic resonance imaging : JMRI.

[39]  Horst Urbach,et al.  Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging--initial experience. , 2003, Radiology.

[40]  P. Parizel,et al.  A brief review of parallel magnetic resonance imaging , 2003, European Radiology.

[41]  S. Riederer,et al.  Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. , 2004, AJNR. American journal of neuroradiology.

[42]  Michael Erb,et al.  Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 Tesla , 2003, Magnetic resonance in medicine.

[43]  Roland Bammer,et al.  Current Concepts and Advances in Clinical Parallel Magnetic Resonance Imaging , 2004, Topics in magnetic resonance imaging : TMRI.

[44]  M. Shapiro,et al.  The time for 3T clinical imaging is now. , 2004, AJNR. American journal of neuroradiology.

[45]  J Huston,et al.  Magnetic resonance angiography at 3.0 Tesla: initial clinical experience. , 2001, Topics in magnetic resonance imaging : TMRI.

[46]  Michael B. Smith,et al.  Central brightening due to constructive interference with, without, and despite dielectric resonance , 2005, Journal of magnetic resonance imaging : JMRI.

[47]  W. Heindel,et al.  Acute and subacute intracerebral hemorrhages: comparison of MR imaging at 1.5 and 3.0 T--initial experience. , 2004, Radiology.

[48]  David G Norris,et al.  High field human imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[49]  [Clinical MR at 3 Tesla: current status]. , 2004, Der Radiologe.

[50]  D. Hadizadeh,et al.  Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.