A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions

The degrees of polynomials representing or approximating Boolean functions are aprominent tool in various branches of complexity theory. Sherstov [31] recently characterizedthe minimal degree dege(f) among all polynomials (over R) that approximatea symmetric function f : {0, 1}n → {0, 1} up to worst-case error e: dege(f) =Θ(deg1/3(f) + √n log(1/e). In this note we show how a tighter version (without thelog-factors hidden in the Θ-notation), can be derived quite easily using the close connectionbetween polynomials and quantum algorithms.

[1]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[2]  Alexander A. Sherstov The pattern matrix method for lower bounds on quantum communication , 2008, STOC '08.

[3]  Nisheeth K. Vishnoi,et al.  On the Fourier spectrum of symmetric Boolean functions with applications to learning symmetric juntas , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[4]  Alex Samorodnitsky,et al.  Inclusion-exclusion: Exact and approximate , 1996, Comb..

[5]  Richard Beigel Perceptrons, PP, and the polynomial hierarchy , 2005, computational complexity.

[6]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[7]  Ryan O'Donnell,et al.  Learning functions of k relevant variables , 2004, J. Comput. Syst. Sci..

[8]  Alexander A. Sherstov The unbounded-error communication complexity of symmetric functions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[9]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[10]  Dorit Aharonov,et al.  A lattice problem in quantum NP , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[11]  Ramamohan Paturi,et al.  On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.

[12]  A A S Approximate Inclusion-Exclusion for Arbitrary Symmetric Functions , 2007 .

[13]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[14]  Troy Lee,et al.  THE QUANTUM ADVERSARY METHOD AND CLASSICAL FORMULA SIZE LOWER BOUNDS , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[15]  T. J. Rivlin,et al.  The growth of polynomials bounded at equally spaced points , 1992 .

[16]  Dorit Aharonov,et al.  Lattice Problems in NP cap coNP , 2004, FOCS.

[17]  Ronald de Wolf,et al.  Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval , 2004, ICALP.

[18]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[19]  Noam Nisan,et al.  Approximate Inclusion-Exclusion , 1990, STOC '90.

[20]  Scott Aaronson,et al.  Lower bounds for local search by quantum arguments , 2003, STOC '04.

[21]  Richard Beigel,et al.  The polynomial method in circuit complexity , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[22]  A. Razborov Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.

[23]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[24]  Ronald de Wolf,et al.  On Quantum Versions of the Yao Principle , 2001, STACS.

[25]  Dorit Aharonov,et al.  Lattice problems in NP ∩ coNP , 2005, JACM.

[26]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[27]  BuhrmanHarry,et al.  Quantum lower bounds by polynomials , 2001 .

[28]  Iordanis Kerenidis Quantum multiparty communication complexity and circuit lower bounds , 2009, Math. Struct. Comput. Sci..

[29]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[30]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[31]  Daniel A. Spielman,et al.  PP is closed under intersection , 1991, STOC '91.

[32]  Ronald de Wolf,et al.  Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[33]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[34]  Ronald de Wolf Lower Bounds on Matrix Rigidity Via a Quantum Argument , 2006, ICALP.

[35]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[36]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Troy Lee,et al.  Disjointness Is Hard in the Multi-party Number-on-the-Forehead Model , 2008, Computational Complexity Conference.