Fully Dynamic Maximal Matching in O(log n) Update Time

We present an algorithm for maintaining maximal matching in a graph under addition and deletion of edges. Our algorithm is randomized and it takes expected amortized $O(\log n)$ time for each edge update, where $n$ is the number of vertices in the graph. While there exists a trivial $O(n)$ time algorithm for each edge update, the previous best known result for this problem is due to Ivkovicź and Lloyd [Lecture Notes in Comput. Sci. 790, Springer-Verlag, London, 1994, pp. 99--111]. For a graph with $n$ vertices and $m$ edges, they gave an $O( {(n+ m)}^{0.7072})$ update time algorithm which is sublinear only for a sparse graph. For the related problem of maximum matching, Onak and Rubinfeld [Proceedings of STOC'10, Cambridge, MA, 2010, pp. 457--464] designed a randomized algorithm that achieves expected amortized $O(\log^2 n)$ time for each update for maintaining a $c$-approximate maximum matching for some unspecified large constant $c$. In contrast, we can maintain a factor 2 approximate maximum matching in expected amortized $O(\log n )$ time per update as a direct corollary of the maximal matching scheme. This in turn also implies a 2-approximate vertex cover maintenance scheme that takes expected amortized $O(\log n )$ time per update.

[1]  L. Shapley,et al.  College Admissions and the Stability of Marriage , 1962 .

[2]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[3]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[4]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[5]  Richard Peng,et al.  Fully Dynamic $(1+\epsilon)$-Approximate Matchings , 2013, 1304.0378.

[6]  Mikkel Thorup,et al.  Fully-Dynamic Min-Cut* , 2007, Comb..

[7]  Rasmus Pagh,et al.  Cuckoo Hashing , 2001, Encyclopedia of Algorithms.

[8]  Krzysztof Onak,et al.  Maintaining a large matching and a small vertex cover , 2010, STOC '10.

[9]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[10]  Uri Zwick,et al.  Improved Dynamic Reachability Algorithms for Directed Graphs , 2008, SIAM J. Comput..

[11]  Sandeep Sen,et al.  Maintaining Approximate Maximum Weighted Matching in Fully Dynamic Graphs , 2012, FSTTCS.

[12]  Telikepalli Kavitha,et al.  Efficient algorithms for maximum weight matchings in general graphs with small edge weights , 2012, SODA.

[13]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[14]  Piotr Sankowski,et al.  Faster dynamic matchings and vertex connectivity , 2007, SODA '07.

[15]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[16]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[17]  Dana Ron,et al.  On Approximating the Minimum Vertex Cover in Sublinear Time and the Connection to Distributed Algorithms , 2007, Electron. Colloquium Comput. Complex..

[18]  Larry Carter,et al.  Universal classes of hash functions (Extended Abstract) , 1977, STOC '77.

[19]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[20]  Uri Zwick,et al.  Dynamic approximate all-pairs shortest paths in undirected graphs , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[21]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[22]  Bruce M. Kapron,et al.  Dynamic graph connectivity in polylogarithmic worst case time , 2013, SODA.

[23]  Errol L. Lloyd,et al.  Fully Dynamic Maintenance of Vertex Cover , 1993, WG.

[24]  Mihai Patrascu,et al.  Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.

[25]  John H. Reif,et al.  Erratum: Optimal Parallel Randomized Algorithms for Three-Dimensional Convex Hulls and Related Problems , 1994, SIAM J. Comput..

[26]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[27]  Shay Solomon,et al.  Deterministic Algorithms for Fully Dynamic Maximal Matching , 2012, ArXiv.