This paper discussed the principle of the ozone wind imaging interferometer developed by our group, which used remote sensing method to detect wind field and ozone concentration simultaneously, focused on the analysis and calculation of the instrument visibility and gave the theoretical representation of the instrument visibility. Computer simulation was used to analyze the influence of the system transmittance, compensation glass surface tilt and mirror surface accuracy on the instrument visibility. The results showed that the splitting ratio of the beam splitter and the field of view would affect the distribution of the instrument visibility; the tilt angle of the compensation glass surface can greatly affect the instrument visibility. We also gave the random error range of wind field speed and temperature at the instrument visibility U > 0.9. This research provides an important theoretical basis and practical guidance for the development and engineering of ozone wind imaging interferometers.