Entanglement rate for Gaussian continuous variable beams

We derive a general expression that quantifies the total entanglement production rate in continuous variable systems, where a source emits two entangled Gaussian beams with arbitrary correlators. This expression is especially useful for situations where the source emits an arbitrary frequency spectrum, e.g. when cavities are involved. To exemplify its meaning and potential, we apply it to a four-mode optomechanical setup that enables the simultaneous up- and down-conversion of photons from a drive laser into entangled photon pairs. This setup is efficient in that both the drive and the optomechanical up- and down-conversion can be fully resonant.

[1]  G. Giuseppe,et al.  Entanglement and squeezing of continuous-wave stationary light , 2014, 1411.5609.

[2]  A. Clerk,et al.  Bipartite and tripartite output entanglement in three-mode optomechanical systems , 2014, 1406.7829.

[3]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[4]  C. Weedbrook,et al.  Continuous-variable dense coding by optomechanical cavities , 2013, 1308.2650.

[5]  S. V. Enk,et al.  Generating robust optical entanglement in weak-coupling optomechanical systems , 2013, 1307.2844.

[6]  Ying-Dan Wang,et al.  Reservoir-engineered entanglement in optomechanical systems. , 2013, Physical review letters.

[7]  Lin Tian,et al.  Robust photon entanglement via quantum interference in optomechanical interfaces. , 2013, Physical review letters.

[8]  M. Devoret,et al.  Generating entangled microwave radiation over two transmission lines. , 2012, Physical review letters.

[9]  G J Milburn,et al.  Reversible optical-to-microwave quantum interface. , 2011, Physical review letters.

[10]  G. Milburn,et al.  Photon-phonon entanglement in coupled optomechanical arrays , 2011, 1109.0790.

[11]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[12]  M. Aspelmeyer,et al.  Quantum entanglement and teleportation in pulsed cavity optomechanics , 2011, 1108.2586.

[13]  U. Andersen,et al.  Quantum light from a whispering-gallery-mode disk resonator. , 2010, Physical review letters.

[14]  Christine Silberhorn,et al.  Continuous‐variable quantum information processing , 2010, 1008.3468.

[15]  O. Painter,et al.  Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. , 2010, Optics express.

[16]  J. Sankey,et al.  Strong and tunable nonlinear optomechanical coupling in a low-loss system , 2010, 1002.4158.

[17]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[18]  J Eisert,et al.  Gently modulating optomechanical systems. , 2009, Physical review letters.

[19]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[20]  P. Tombesi,et al.  Quantum Effects in Optomechanical Systems , 2009, 0901.2726.

[21]  Z. Yin,et al.  Generating EPR beams in a cavity optomechanical system , 2008, 0811.0424.

[22]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[23]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[24]  P. Tombesi,et al.  Robust entanglement of a micromechanical resonator with output optical fields , 2008, 0806.2045.

[25]  Yanbei Chen,et al.  Route to ponderomotive entanglement of light via optically trapped mirrors , 2008, 0803.4001.

[26]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[27]  N. Mavalvala,et al.  LIGO-P070064-00-Z A route to observing ponderomotive entanglement with optically trapped mirrors , 2008 .

[28]  J. Eisert,et al.  Creating and probing multipartite macroscopic entanglement with light. , 2006, Physical review letters.

[29]  S. Gigan,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[30]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[31]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[32]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[33]  Samuel L. Braunstein,et al.  Quantum-state transfer from light to macroscopic oscillators , 2003 .

[34]  N. Treps,et al.  An experimental investigation of criteria for continuous variable entanglement , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[35]  K. Audenaert,et al.  Entanglement properties of the harmonic chain , 2002, quant-ph/0205025.

[36]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[37]  J. Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[38]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[39]  Prasad,et al.  Treatment of the spectrum of squeezing based on the modes of the universe. I. Theory and a physical picture. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[40]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[41]  C. Gardiner,et al.  Squeezing of intracavity and traveling-wave light fields produced in parametric amplification , 1984 .

[42]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .