Progress, challenges and perspectives in flexible perovskite solar cells

Perovskite solar cells have attracted enormous interest since their discovery only a few years ago because they are able to combine the benefits of high efficiency and remarkable ease of processing over large areas. Whereas most of research has been carried out on glass, perovskite deposition and synthesis is carried out at low temperatures (<150 °C) to convert precursors into its final semiconducting form. Thus, developing the technology on flexible substrates can be considered a suitable and exciting arena both from the manufacturing view point (e.g. web processing, low embodied energy manufacturing) and that of the applications (e.g. flexible, lightweight, portable, easy to integrate over both small, large and curved surfaces). Research has been accelerating on flexible PSCs and has achieved notable milestones including PCEs of 15.6% on laboratory cells, the first modules being manufactured, ultralight cells with record power per gram ratios, and even cells made on fibres. Reviewing the literature, it becomes apparent that more work can be carried out in closing the efficiency gap with glass based counterparts especially at the large-area module level and, in particular, investigating and improving the lifetime of these devices which are built on inherently permeable plastic films. Here we review and provide a perspective on the issues pertaining progress in materials, processes, devices, industrialization and costs of flexible perovskite solar cells.

[1]  Noel Clark,et al.  3D Printer Based Slot‐Die Coater as a Lab‐to‐Fab Translation Tool for Solution‐Processed Solar Cells , 2015 .

[2]  Huisheng Peng,et al.  Elastic perovskite solar cells , 2015 .

[3]  A Di Carlo,et al.  Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. , 2014, Physical chemistry chemical physics : PCCP.

[4]  Zhibin Yang,et al.  High‐Performance Fully Printable Perovskite Solar Cells via Blade‐Coating Technique under the Ambient Condition , 2015 .

[5]  David B. Mitzi,et al.  Organic-inorganic electronics , 2001, IBM J. Res. Dev..

[6]  Domenico Campisi,et al.  Economic sustainability of ground mounted photovoltaic systems: an Italian case study , 2015 .

[7]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[8]  Yohan Ko,et al.  Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate. , 2016, ChemSusChem.

[9]  Bin Hu,et al.  Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells , 2015 .

[10]  Yi-Bing Cheng,et al.  Encapsulation for improving the lifetime of flexible perovskite solar cells , 2015 .

[11]  Jeyraj Selvaraj,et al.  Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation , 2015 .

[12]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[13]  Zhijian Chen,et al.  CH3NH3PbI3 and CH3NH3PbI3–xClx in Planar or Mesoporous Perovskite Solar Cells: Comprehensive Insight into the Dependence of Performance on Architecture , 2015 .

[14]  Oscar Miguel,et al.  Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact , 2014 .

[15]  Bert Conings,et al.  An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates , 2015 .

[16]  Yani Chen,et al.  Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl , 2015 .

[17]  P. K. Larsen,et al.  Thin film GaAs solar cells with increased quantum efficiency due to light reflection , 2004 .

[18]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[19]  Yongfang Li,et al.  Fullerene derivative acceptors for high performance polymer solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[20]  Lingamallu Giribabu,et al.  Recent advances in flexible perovskite solar cells. , 2015, Chemical communications.

[21]  Laurent Ducasse,et al.  Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units , 1996 .

[22]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[23]  Seong Sik Shin,et al.  Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature , 2015 .

[24]  L. Jay Guo,et al.  Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light‐Emitting Diodes , 2007 .

[25]  Juan Bisquert,et al.  Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[26]  Th. Dittrich,et al.  Electron Drift Mobility in Porous TiO2 (Anatase) , 1998 .

[27]  Itaru Osaka,et al.  High-efficiency polymer solar cells with small photon energy loss , 2015, Nature Communications.

[28]  F. Kessler,et al.  Technological aspects of flexible CIGS solar cells and modules , 2004 .

[29]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[30]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[31]  Vernie Everett,et al.  Sliver® solar cells: A new thin-crystalline silicon photovoltaic technology , 2006 .

[32]  Pedro Barquinha,et al.  Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature , 2004 .

[33]  Shihe Yang,et al.  Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. , 2014, Angewandte Chemie.

[34]  Leone Spiccia,et al.  Low temperature processing of flexible planar perovskite solar cells with efficiency over 10 , 2015 .

[35]  Shiwei Lin,et al.  Perovskite Solar Cells: Device Construction andI-VHysteresis , 2015 .

[36]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[37]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[38]  Yongseok Jun,et al.  Flexible organo-metal halide perovskite solar cells on a Ti metal substrate , 2015 .

[39]  Peter Lund,et al.  Review of materials and manufacturing options for large area flexible dye solar cells , 2011 .

[40]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[41]  Huisheng Peng,et al.  Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process , 2015 .

[42]  Wei Zhang,et al.  Pinhole-free perovskite films for efficient solar modules , 2016 .

[43]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[44]  Ronn Andriessen,et al.  Towards the scaling up of perovskite solar cells and modules , 2016 .

[45]  Hyung-Kee Seo,et al.  An Insight into Atmospheric Plasma Jet Modified ZnO Quantum Dots Thin Film for Flexible Perovskite Solar Cell: Optoelectronic Transient and Charge Trapping Studies , 2015 .

[46]  Liming Ding,et al.  Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. , 2015, Small.

[47]  R. Chavali,et al.  Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient ( ηT* ∼ 33%) solar cell , 2015, 1506.01039.

[48]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[49]  Donal D. C. Bradley,et al.  Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates , 2011 .

[50]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[51]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[52]  Frederik C. Krebs,et al.  Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates , 2015 .

[53]  R. Friend,et al.  Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer , 1999 .

[54]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[55]  Rajan Jose,et al.  One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells , 2015 .

[56]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[57]  Francesco Di Giacomo,et al.  Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells , 2015 .

[58]  A. Di Carlo,et al.  Outdoor and diurnal performance of large conformal flexible metal/plastic dye solar cells , 2014 .

[59]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[60]  Hironori Arakawa,et al.  Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6% , 2010 .

[61]  Aldo Di Carlo,et al.  Laser Processing in the Manufacture of Dye‐Sensitized and Perovskite Solar Cell Technologies , 2016 .

[62]  David Worsley,et al.  Rapid processing of perovskite solar cells in under 2.5 seconds , 2015 .

[63]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[64]  Rajan Jose,et al.  A perspective on the production of dye-sensitized solar modules , 2014 .

[65]  Qi Chen,et al.  Perovskite solar cells: film formation and properties , 2015 .

[66]  Christophe Ballif,et al.  Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules , 2015, IEEE Journal of Photovoltaics.

[67]  Meng Qiu,et al.  High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions , 2015 .

[68]  Richard M. Swanson,et al.  The promise of concentrators , 2000 .

[69]  Qiang Yao,et al.  China’s solar photovoltaic industry development: The status quo, problems and approaches , 2014 .

[70]  S. Guha,et al.  High efficiency amorphous and nanocrystalline silicon thin film solar cells on flexible substrates , 2012, 2012 19th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD).

[71]  Peng Gao,et al.  Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. , 2014, Nano letters.

[72]  David Worsley,et al.  Photonic flash-annealing of lead halide perovskite solar cells in 1 ms , 2016 .

[73]  Dae-Eun Kim,et al.  Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic–Inorganic Perovskite , 2015 .

[74]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[75]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[76]  Jianyong Ouyang,et al.  Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. , 2015, ACS applied materials & interfaces.

[77]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[78]  Man Gu Kang,et al.  Fabrication of an Efficient Dye-Sensitized Solar Cell with Stainless Steel Substrate , 2008 .

[79]  Rajan Jose,et al.  Multiporous nanofibers of SnO2 by electrospinning for high efficiency dye-sensitized solar cells , 2014 .

[80]  Jae Su Yu,et al.  Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells , 2016 .

[81]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[82]  Frederik C. Krebs,et al.  Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective , 2015 .

[83]  A. Blakers,et al.  Flexible silicon solar cells , 2009 .

[84]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[85]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[86]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[87]  Stephan Buecheler,et al.  Technological status of CdTe photovoltaics , 2013 .

[88]  Christoph J. Brabec,et al.  Organic photovoltaics for low light applications , 2011 .

[89]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[90]  Shiro Nishiwaki,et al.  Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil , 2013, Nature Communications.

[91]  Alex K.-Y. Jen,et al.  Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments , 2014 .

[92]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[93]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[94]  Paul Heremans,et al.  High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step , 2015 .

[95]  Yang Yang,et al.  High-efficiency robust perovskite solar cells on ultrathin flexible substrates , 2016, Nature Communications.

[96]  Kenji Kakiage,et al.  Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. , 2015, Chemical communications.

[97]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[98]  Thomas M. Brown,et al.  Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination , 2017, Nano Research.

[99]  Bert Conings,et al.  An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells , 2014 .

[100]  Jianbin Xu,et al.  Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. , 2015, Journal of the American Chemical Society.

[101]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[102]  Gaoyi Han,et al.  An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode , 2016 .

[103]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[104]  Bei Chu,et al.  Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. , 2015, Nanoscale.

[105]  Tzung-Fang Guo,et al.  High voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate. , 2014, Physical chemistry chemical physics : PCCP.

[106]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[107]  Yang Yang,et al.  Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. , 2015, Nano letters.

[108]  Frederik C. Krebs,et al.  Tin‐ and Lead‐Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective , 2015 .

[109]  A. Di Carlo,et al.  TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells , 2015 .

[110]  Helmut Neugebauer,et al.  A new encapsulation solution for flexible organic solar cells , 2006 .

[111]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[112]  Aldo Di Carlo,et al.  Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO4 laser patterned rutile TiO2 nanorods , 2015, Nanotechnology.

[113]  Thomas M. Brown,et al.  Procedures and Practices for Evaluating Thin‐Film Solar Cell Stability , 2015 .

[114]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[115]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[116]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[117]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[118]  Sungho Jin,et al.  Dye-sensitized solar cell constructed with titanium mesh and 3-D array of TiO2 nanotubes. , 2010, The journal of physical chemistry. B.

[119]  Timothy L. Kelly,et al.  Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells , 2014 .

[120]  Aldo Di Carlo,et al.  Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. , 2015, ACS nano.

[121]  Ningyi Yuan,et al.  The effect of ALD-Zno layers on the formation of CH₃NH₃PbI₃ with different perovskite precursors and sintering temperatures. , 2014, Chemical communications.

[122]  A. Di Carlo,et al.  Progress in flexible dye solar cell materials, processes and devices , 2014 .

[123]  Francesco Di Giacomo,et al.  A Systematic Investigation of Permeation Barriers for Flexible Dye-Sensitized Solar Cells , 2016 .

[124]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[125]  Kianoosh Poorkazem,et al.  Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell , 2015 .

[126]  Gong Gu,et al.  High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing , 2015 .

[127]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[128]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[129]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[130]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[131]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[132]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[133]  Frederik C. Krebs,et al.  Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes , 2015 .

[134]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[135]  Fan Li,et al.  A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite , 2015 .

[136]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[137]  Tsutomu Miyasaka,et al.  Brookite TiO2 as a low-temperature solution-processed mesoporous layer for hybrid perovskite solar cells , 2015 .

[138]  Kam Sing Wong,et al.  Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. , 2016, ACS nano.

[139]  Ulrich Wiesner,et al.  Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. , 2015, Journal of the American Chemical Society.

[140]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[141]  Aldo Di Carlo,et al.  High efficiency photovoltaic module based on mesoscopic organometal halide perovskite , 2016 .

[142]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[143]  Wen-Hau Zhang,et al.  Organolead halide perovskites: a family of promising semiconductor materials for solar cells , 2014 .

[144]  Konrad Wojciechowski,et al.  Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates , 2015 .

[145]  Lydia Helena Wong,et al.  TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode , 2015 .

[146]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[147]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[148]  Yunlong Li,et al.  Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer , 2015, Nano Research.

[149]  Frederik C. Krebs,et al.  Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide , 2009 .

[150]  A. Di Carlo,et al.  Blocking layer optimisation of poly(3-hexylthiopene)based solid state dye sensitized solar cells , 2013 .

[151]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[152]  Aldo Di Carlo,et al.  A Simple Approach for the Fabrication of Perovskite Solar Cells in Air , 2015 .

[153]  Martin A. Green,et al.  Solar cell efficiency tables (version 47) , 2016 .

[154]  Chien-Yu Chen,et al.  Perovskite Photovoltaics for Dim‐Light Applications , 2015 .

[155]  Supratik Guha,et al.  Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .

[156]  Shiro Nishiwaki,et al.  High efficiency flexible Cu(In,Ga)Se2 solar cells , 2013, 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD).

[157]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[159]  Hyun Suk Jung,et al.  Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. , 2014, Nanoscale.

[160]  Andrea Reale,et al.  Fully plastic dye solar cell devices by low-temperature UV-irradiation of both the mesoporous TiO2 photo- and platinized counter-electrode , 2013 .

[161]  Tao Chen,et al.  Layer‐by‐Layer Growth of CH3NH3PbI3−xClx for Highly Efficient Planar Heterojunction Perovskite Solar Cells , 2015, Advanced materials.

[162]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[163]  Zach M. Beiley,et al.  Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20 , 2012 .

[164]  M. Green Thin-film solar cells: review of materials, technologies and commercial status , 2007 .

[165]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[166]  Peng Chen,et al.  Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. , 2016, ACS nano.

[167]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[168]  Michael D. McGehee,et al.  High-efficiency tandem perovskite solar cells , 2015 .

[169]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[170]  Huawei Zhou,et al.  Low-Temperature Processed and Carbon-Based ZnO/CH3NH3PbI3/C Planar Heterojunction Perovskite Solar Cells , 2015 .

[171]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[172]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[173]  T. Brown,et al.  Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting , 2015 .

[174]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[175]  Yan Yao,et al.  Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. , 2015, ACS nano.

[176]  Zhiyong Fan,et al.  Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. , 2016, Nanoscale.

[177]  Hyung-Kee Seo,et al.  Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer. , 2015, Dalton transactions.

[178]  Yongseok Jun,et al.  Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate , 2015 .

[179]  W. Marsden I and J , 2012 .

[180]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[181]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[182]  Zulkeflee Khalidin,et al.  Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks , 2014 .

[183]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[184]  Shenghao Wang,et al.  Temperature-dependent hysteresis effects in perovskite-based solar cells , 2015 .

[185]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[186]  Olivier Reynaud,et al.  Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. , 2015, Nano letters.

[187]  Yunlong Li,et al.  CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. , 2015, Nano letters.

[188]  M. Grätzel Dye-sensitized solar cells , 2003 .

[189]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[190]  Michele Sessolo,et al.  Perovskite photovoltaics: Hovering solar cells. , 2015, Nature materials.

[191]  Meyer,et al.  Compositional inversion symmetry breaking in ferroelectric perovskites , 2000, Physical review letters.

[192]  Rajan Jose,et al.  Tin oxide as a photoanode for dye-sensitised solar cells: Current progress and future challenges , 2015 .

[193]  Rajan Jose,et al.  Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. , 2016, Physical chemistry chemical physics : PCCP.

[194]  Jan Fyenbo,et al.  Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing , 2010 .

[195]  M. Paggi,et al.  Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules , 2014, Scientific Reports.

[196]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[197]  Yang Yang,et al.  Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells. , 2015, ACS nano.

[198]  Erin Baker,et al.  Estimating the manufacturing cost of purely organic solar cells , 2009 .