Quantum secret sharing using orthogonal multiqudit entangled states

In this work, we investigate the distinguishability of orthogonal multiqudit entangled states under restricted local operations and classical communication. According to these properties, we propose a quantum secret sharing scheme to realize three types of access structures, i.e., the (n, n)-threshold, the restricted (3, n)-threshold and restricted (4, n)-threshold schemes (called LOCC-QSS scheme). All cooperating players in the restricted threshold schemes are from two disjoint groups. In the proposed protocol, the participants use the computational basis measurement and classical communication to distinguish between those orthogonal states and reconstruct the original secret. Furthermore, we also analyze the security of our scheme in four primary quantum attacks and give a simple encoding method in order to better prevent the participant conspiracy attack.

[1]  Huawang Qin,et al.  Verifiable (t, n) threshold quantum secret sharing using d-dimensional Bell state , 2016, Inf. Process. Lett..

[2]  Haipeng Peng,et al.  Restricted (k, n)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states , 2017, Quantum Inf. Process..

[3]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[4]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[5]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[6]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[7]  Nana Wang,et al.  Ultrastrong Graphene Absorption Induced by One-Dimensional Parity-Time Symmetric Photonic Crystal , 2017, IEEE Photonics Journal.

[8]  Guang-Can Guo,et al.  Experimental verification of genuine multipartite entanglement without shared reference frames , 2016 .

[9]  L. Hsu,et al.  Quantum secret sharing using product states , 2005 .

[10]  Jin-Shi Xu,et al.  Quantum integrated circuit: classical characterization , 2015 .

[11]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[12]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[13]  Pradeep Kiran Sarvepalli,et al.  Matroids and Quantum Secret Sharing Schemes , 2009, ArXiv.

[14]  V. Karimipour,et al.  Quantum secret sharing and random hopping: Using single states instead of entanglement , 2015, 1506.02966.

[15]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[16]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[17]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[18]  Chun-Wei Yang,et al.  Quantum private comparison of equality protocol without a third party , 2014, Quantum Inf. Process..

[19]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[20]  Zu-Rong Zhang,et al.  Quantum secret sharing based on quantum error-correcting codes , 2011 .

[21]  Yong-Ming Li,et al.  A Generalized Information Theoretical Model for Quantum Secret Sharing , 2016, 1603.06032.

[22]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[23]  Jiangfeng Zhu,et al.  Spectroscopic Properties and Continuous Wave Laser Performances at 1064 nm of Nd3+: LuAG Transparent Ceramic , 2017, IEEE Photonics Journal.

[24]  A. Szameit,et al.  A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization , 2015 .

[25]  Fuguo Deng,et al.  Heralded entanglement concentration for photon systems with linear-optical elements , 2015 .

[26]  Gustavo Rigolin,et al.  Generalized quantum-state sharing , 2006 .

[27]  Yong-Ming Li,et al.  Quantum secret sharing using the d-dimensional GHZ state , 2017, Quantum Inf. Process..

[28]  Sourya Joyee De,et al.  A Proposal for Quantum Rational Secret Sharing , 2015, ArXiv.

[29]  Fei Gao,et al.  Quantum secret sharing via local operations and classical communication , 2015, Scientific Reports.

[30]  ZEILINGERα,et al.  QUEST FOR GHZ STATES , 2013 .

[31]  B. Sanders,et al.  Accessing quantum secrets via local operations and classical communication , 2013, 1305.0805.

[32]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[33]  Kejin Wei,et al.  Experimental circular quantum secret sharing over telecom fiber network. , 2013, Optics express.

[34]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[35]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[36]  Fuguo Deng,et al.  Circular quantum secret sharing , 2006, quant-ph/0612018.

[37]  Peng Huang,et al.  Hybrid quantum private communication with continuous-variable and discrete-variable signals , 2015 .

[38]  M. Żukowski,et al.  Secret sharing with a single d -level quantum system , 2015 .

[39]  Zhang-Qi Yin,et al.  Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator , 2015, 1509.03763.

[40]  Cao Hao,et al.  (t, n) Threshold Quantum State Sharing Scheme Based on Linear Equations and Unitary Operation , 2017, IEEE Photonics Journal.

[41]  Long Zhang,et al.  A potential application in quantum networks—Deterministic quantum operation sharing schemes with Bell states , 2016 .

[42]  Xiaohua Zhu,et al.  (t, n) Threshold quantum secret sharing using the phase shift operation , 2015, Quantum Inf. Process..

[43]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[44]  Matthew G. Parker,et al.  Quantum secret sharing based on local distinguishability , 2014, ArXiv.

[45]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[46]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.