Logical analysis of the mechanism of protein folding. I. Predictions of helices, loops and beta-structures from primary structure.

[1]  T. Tsukihara,et al.  The crystal structure of bonito (Katsuo) ferrocytochrome c at 2.3 A resolution. , 1971, Journal of biochemistry.

[2]  M. Kanehisa,et al.  Fluctuation of an -helix structure. Difference between the central and terminal portions. , 1972, Journal of molecular biology.

[3]  L Järup,et al.  Crystal structure of human carbonic anhydrase C. , 1972, Nature: New biology.

[4]  P. Alexander Foetal “Antigens” in Cancer , 1972, Nature.

[5]  O. Ptitsyn,et al.  Statistical analysis of the correlation among amino acid residues in helical, beta-structural and non-regular regions of globular proteins. , 1971, Journal of molecular biology.

[6]  The amino acid sequence of cytochrome c from Debaryomyces kloeckeri. , 1971, Journal of biochemistry.

[7]  The amino acid sequence of cytochrome c from bonito (Katsuwonus pelamis, Linnaeus). , 1971, Journal of biochemistry.

[8]  K. Madyastha,et al.  Development of a Specific Anti-leukaemic Serum for the Treatment of Leukaemia in Clinics , 1971, Nature.

[9]  C. Blake,et al.  X-ray analysis of structure of human lysozyme at 6 A resolution. , 1971, Nature: New biology.

[10]  R. Canfield,et al.  Primary structure of lysozymes from man and goose. , 1971, Nature: New biology.

[11]  T. Blundell,et al.  Atomic Positions in Rhombohedral 2-Zinc Insulin Crystals , 1971, Nature.

[12]  B. Robson,et al.  Analysis of the code relating sequence to conformation in proteins: possible implications for the mechanism of formation of helical regions. , 1971, Journal of molecular biology.

[13]  H Formanek,et al.  The atomic structure of erythrocruorin in the light of the chemical sequence and its comparison with myoglobin. , 1971, European journal of biochemistry.

[14]  G. Air,et al.  Amino-acid Sequences of Kangaroo Myoglobin and Haemoglobin and the Date of Marsupial-Eutherian Divergence , 1971, Nature.

[15]  R. Leberman Secondary structure of tobacco mosaic virus protein. , 1971, Journal of molecular biology.

[16]  M. Rossmann,et al.  Structure of Lactate Dehydrogenase at 2.8 Å Resolution , 1970, Nature.

[17]  W. Lovenberg,et al.  Structure of rubredoxin: an x-ray study to 2.5 A resolution. , 1970, Journal of molecular biology.

[18]  N. Xuong,et al.  Chymotrypsinogen: 2,5-Å crystal structure, comparison with α-chymotrypsin, and implications for zymogen activation , 1970 .

[19]  D. Shotton,et al.  Three-dimensional Structure of Tosyl-elastase , 1970, Nature.

[20]  D. Shotton,et al.  Three-dimensional Fourier Synthesis of Tosyl-elastase at 3.5 Å Resolution , 1970, Nature.

[21]  D. Shotton,et al.  Amino-acid Sequence of Porcine Pancreatic Elastase and its Homologies with other Serine Proteinases , 1970, Nature.

[22]  G N Reeke,et al.  The structure of carboxypeptidase A. 8. Atomic interpretation at 0.2 nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  J. Hermann,et al.  The primary structure of duck egg-white lysozyme II. , 1970, Biochimica et biophysica acta.

[24]  O. Ptitsyn,et al.  Statistical analysis of the distribution of amino acid residues among helical and non-helical regions in globular proteins. , 1969, Journal of molecular biology.

[25]  D. Blow,et al.  The study of alpha-chymotrypsin by x-ray diffraction. The Third CIBA Medal Lecture. , 1969, The Biochemical journal.

[26]  J. Kraut,et al.  Structure of Subtilisin BPN′ at 2.5 Å Resolution , 1969, Nature.

[27]  B. Matthews,et al.  Structure of crystalline -chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. , 1968, Journal of molecular biology.

[28]  M. Perutz,et al.  Three-dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å Resolution: The Atomic Model , 1968, Nature.

[29]  J. Drenth,et al.  Structure of Papain , 1968, Nature.

[30]  B. Matthews,et al.  Three-dimensional Structure of Tosyl-α-chymotrypsin , 1967, Nature.

[31]  A. M. Liquori,et al.  Recognition of α-helical segments in proteins of known primary structure☆ , 1967 .

[32]  M. Schiffer,et al.  Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. , 1967, Biophysical journal.

[33]  D. Harker,et al.  Tertiary Structure of Ribonuclease , 1967, Nature.

[34]  D. Phillips,et al.  The three-dimensional structure of an enzyme molecule. , 1966, Scientific American.

[35]  J W Prothero,et al.  Correlation between the distribution of amino acids and alpha helices. , 1966, Biophysical journal.

[36]  A. Guzzo,et al.  The influence of amino-acid sequence on protein structure. , 1965, Biophysical journal.

[37]  J. C. Kendrew,et al.  Structure and function of haemoglobin: II. Some relations between polypeptide chain configuration and amino acid sequence , 1965 .

[38]  D. F. Koenig,et al.  Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution , 1965, Nature.

[39]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.