Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups

Consider the mapping class group Modg,p of a surface Σg,p of genus g with p punctures, and a finite collection {f1, . . . , fk} of mapping classes, each of which is either a Dehn twist about a simple closed curve or a pseudo-Anosov homeomorphism supported on a connected subsurface. In this paper we prove that for all sufficiently large N, the mapping classes $${\{f_1^N,\ldots,f_k^N\}}$$ generate a right-angled Artin group. The right-angled Artin group which they generate can be determined from the combinatorial topology of the mapping classes themselves. When {f1, . . . , fk} are arbitrary mapping classes, we show that sufficiently large powers of these mapping classes generate a group which embeds in a right-angled Artin group in a controlled way. We establish some analogous results for real and complex hyperbolic manifolds. We also discuss the unsolvability of the isomorphism problem for finitely generated subgroups of Modg,p, and recover the fact that the isomorphism problem for right-angled Artin groups is solvable. We thus characterize the isomorphism type of many naturally occurring subgroups of Modg,p.

[1]  Jason A. Behrstock,et al.  Divergence and quasimorphisms of right-angled Artin groups , 2010, 1001.3587.

[2]  K. Fujiwara Subgroups generated by two pseudo-Anosov elements in a mapping class group. I. Uniform exponential growth , 2008 .

[3]  Lucas Sabalka Embedding right-angled Artin groups into graph braid groups , 2005, math/0506253.

[4]  Lucas Sabalka On rigidity and the isomorphism problem for tree braid groups , 2007, 0711.1160.

[5]  Charles F. Miller,et al.  Structure and finiteness properties of subdirect products of groups , 2007, 0708.4331.

[6]  J. Harer The virtual cohomological dimension of the mapping class group of an orientable surface , 1986 .

[7]  A. Lubotzky,et al.  Rank one phenomena for mapping class groups , 2000 .

[8]  C. Thomas,et al.  COHOMOLOGY OF GROUPS (Graduate Texts in Mathematics, 87) , 1984 .

[9]  E. Primrose,et al.  Subgroups of Teichmuller Modular Groups , 1992 .

[10]  Charles F. Miller On Group-Theoretic Decision Problems and Their Classification. , 1971 .

[11]  Ara Basmajian,et al.  COMPLEX HYPERBOLIC GEOMETRY (Oxford Mathematical Monographs) , 2001 .

[12]  Séminaire Orsay,et al.  Travaux de Thurston sur les surfaces : Séminaire Orsay , 1979 .

[13]  Thomas Koberda,et al.  Embedability between right-angled Artin groups , 2011, 1105.5056.

[14]  Benson Farb Some problems on mapping class groups and moduli space , 2006, math/0606432.

[15]  M. Kapovich,et al.  Actions of discrete groups on nonpositively curved spaces , 1996 .

[16]  K A Mihailova THE OCCURRENCE PROBLEM FOR FREE PRODUCTS OF GROUPS , 1968 .

[17]  Michael R. Laurence,et al.  A Generating Set for the Automorphism Group of a Graph Group , 1995 .

[18]  Herman Servatius,et al.  Automorphisms of graph groups , 1989 .

[19]  M. Farber,et al.  Random groups arising as graph products , 2010, 1006.3378.

[20]  A. Lubotzky,et al.  Rank-1 phenomena for mapping class groups , 2001 .

[21]  J. Gubeladze The isomorphism problem for commutative monoid rings , 1998 .

[22]  R. Benedetti,et al.  Lectures on Hyperbolic Geometry , 1992 .

[23]  Ruth Charney,et al.  Finite K (π, 1)s for Artin Groups , 1996 .

[24]  M. Bridson On the dimension of CAT(0) spaces where mapping class groups act , 2009, 0908.0690.

[25]  A combination theorem for Veech subgroups of the mapping class group , 2004, math/0410041.

[26]  M. Bridson Semisimple actions of mapping class groups on CAT(0) spaces , 2009, 0908.0685.

[27]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.

[28]  Carl Droms,et al.  Subgroups of Graph Groups , 1987 .

[29]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[30]  Representations of surface groups and right-angled Artin groups in higher rank , 2007, math/0701493.

[31]  Matt Clay,et al.  The geometry of right angled Artin subgroups of mapping class groups , 2010, 1007.1129.

[32]  I. Agol Criteria for virtual fibering , 2007, 0707.4522.

[33]  John R. Stallings,et al.  Topology of finite graphs , 1983 .

[34]  Ruth Charney,et al.  An introduction to right-angled Artin groups , 2006, math/0610668.

[35]  Carl Droms Isomorphisms of graph groups , 1987 .

[36]  J. Harer,et al.  Combinatorics of Train Tracks. , 1991 .

[37]  T. Koberda Residual properties of 3-manifold groups I: Fibered and hyperbolic 3-manifolds , 2009, 0910.2035.

[38]  Stephen P. Humphries On Representations of Artin Groups and the Tits Conjecture , 1994 .

[39]  C. Procesi,et al.  The automorphism group of a free group is not linear , 1992 .

[40]  G. A. Soifer,et al.  Free Subgroups of Linear Groups , 2007 .

[41]  Noel Brady,et al.  Morse theory and finiteness properties of groups , 1997 .

[42]  Matthew B. Day Peak reduction and finite presentations for automorphism groups of right-angled Artin groups , 2009 .

[43]  J. Świa̧tkowski,et al.  Hyperbolic Coxeter groups of large dimension , 2003 .

[44]  A. Lubotzky A group theoretic characterization of linear groups , 1988 .

[45]  The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group , 2000, math/0003133.

[46]  H. Hilden,et al.  Isotopies of homeomorphisms of Riemann surfaces and a theorem about Artin's braid group , 1972 .

[47]  Charles F. Miller Decision Problems for Groups — Survey and Reflections , 1992 .

[48]  Presentations of subgroups of the braid group generated by powers of band generators , 2009, 0904.1469.

[49]  L. Funar On power subgroups of mapping class groups , 2009, 0910.1493.

[50]  J. D. McCarthy,et al.  Dynamics on Thurston’s sphere of projective measured foliations , 1989 .

[51]  Unsolvability of the isomorphism problem for [free abelian]-by-free groups , 2008, 0810.0935.

[52]  Gilbert Baumslag,et al.  Subgroups of Direct Products of Free Groups , 1984 .

[53]  Alexander Lubotzky,et al.  Abelian and solvable subgroups of the mapping class groups , 1983 .

[54]  Daniel T. Wise,et al.  Special Cube Complexes , 2008, The Structure of Groups with a Quasiconvex Hierarchy.

[55]  H. Oh Discrete Subgroups Generated by Lattices in Opposite Horospherical Subgroups , 1998 .

[56]  Gilbert Baumslag,et al.  Algorithms and Classification in Combinatorial Group Theory , 2011 .