Critical Role for GAB2 in Neuroblastoma Pathogenesis through the Promotion of SHP2/MYCN Cooperation.

[1]  Ping Zhu,et al.  Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases , 2016, Nature.

[2]  Sohita Dhillon Dabrafenib plus Trametinib: a Review in Advanced Melanoma with a BRAFV600 Mutation , 2016, Targeted Oncology.

[3]  A. Look,et al.  Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain , 2016, eLife.

[4]  B. Neel,et al.  Distinct GAB2 signaling pathways are essential for myeloid and lymphoid transformation and leukemogenesis by BCR-ABL1. , 2016, Blood.

[5]  F. Speleman,et al.  Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma , 2015, Science Translational Medicine.

[6]  Gudrun Schleiermacher,et al.  Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations , 2015, Nature Genetics.

[7]  J. Shohet,et al.  Neuroblastoma: molecular pathogenesis and therapy. , 2015, Annual review of medicine.

[8]  G. Brodeur,et al.  Mechanisms of neuroblastoma regression , 2014, Nature Reviews Clinical Oncology.

[9]  Ravi Radhakrishnan,et al.  ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. , 2014, Cancer cell.

[10]  J. Maris,et al.  Children's Oncology Group's 2013 blueprint for research: Neuroblastoma , 2013, Pediatric blood & cancer.

[11]  K. Stegmaier,et al.  Targeting MYCN in neuroblastoma by BET bromodomain inhibition. , 2013, Cancer discovery.

[12]  Steven J. M. Jones,et al.  The genetic landscape of high-risk neuroblastoma , 2013, Nature Genetics.

[13]  D. Saito,et al.  The Dorsal Aorta Initiates a Molecular Cascade That Instructs Sympatho-Adrenal Specification , 2012, Science.

[14]  D. Neuberg,et al.  Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. , 2012, Cancer cell.

[15]  D. Zwijnenburg,et al.  Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes , 2012, Nature.

[16]  Frank Speleman,et al.  Meta-analysis of Neuroblastomas Reveals a Skewed ALK Mutation Spectrum in Tumors with MYCN Amplification , 2010, Clinical Cancer Research.

[17]  S. Jeffrey,et al.  Focal amplification and oncogene dependency of GAB2 in breast cancer , 2010, Oncogene.

[18]  D. Rimm,et al.  Gab2-mediated signaling promotes melanoma metastasis. , 2009, The American journal of pathology.

[19]  John M. Maris,et al.  Identification of ALK as a major familial neuroblastoma predisposition gene , 2008, Nature.

[20]  Gudrun Schleiermacher,et al.  Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma , 2008, Nature.

[21]  S. Ogawa,et al.  Oncogenic mutations of ALK kinase in neuroblastoma , 2008, Nature.

[22]  D. Gary Gilliland,et al.  Activating mutations in ALK provide a therapeutic target in neuroblastoma , 2008, Nature.

[23]  L. Zon,et al.  Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish , 2008, Oncogene.

[24]  C Blake Gilks,et al.  Amplification of 11q13 in ovarian carcinoma , 2008, Genes, chromosomes & cancer.

[25]  B. Neel,et al.  The tyrosine phosphatase Shp2 (PTPN11) in cancer , 2008, Cancer and Metastasis Reviews.

[26]  B. Neel,et al.  The role of Shp2 (PTPN11) in cancer. , 2007, Current opinion in genetics & development.

[27]  Roger J Daly,et al.  Increased Proliferation and Altered Growth Factor Dependence of Human Mammary Epithelial Cells Overexpressing the Gab2 Docking Protein* , 2006, Journal of Biological Chemistry.

[28]  Malcolm McGregor,et al.  Diverse Biochemical Properties of Shp2 Mutants , 2005, Journal of Biological Chemistry.

[29]  J. Kutok,et al.  Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. , 2005, Cancer cell.

[30]  John D. Minna,et al.  Activating Mutations of the Noonan Syndrome-Associated SHP2/PTPN11 Gene in Human Solid Tumors and Adult Acute Myelogenous Leukemia , 2004, Cancer Research.

[31]  M. Loh,et al.  Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. , 2004, Blood.

[32]  H. Hsu,et al.  Parallel Early Development of Zebrafish Interrenal Glands and Pronephros: Differential Control by wt1 and ff1b , 2004, Endocrine research.

[33]  J. Licht,et al.  Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia , 2003, Nature Genetics.

[34]  B. Neel,et al.  The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. , 2003, Trends in biochemical sciences.

[35]  Bruce D Gelb,et al.  PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. , 2002, American journal of human genetics.

[36]  H. Iwasaki,et al.  Critical role for Gab2 in transformation by BCR/ABL. , 2002, Cancer cell.

[37]  Michael A. Patton,et al.  Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome , 2001, Nature Genetics.

[38]  J. C. Pratt,et al.  Essential role for Gab2 in the allergic response , 2001, Nature.

[39]  T. Hirano,et al.  Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. , 1999, Blood.

[40]  J. C. Pratt,et al.  Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. , 1998, Molecular cell.

[41]  J. Hoehner,et al.  A developmental model of neuroblastoma: differentiating stroma-poor tumors' progress along an extra-adrenal chromaffin lineage. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[42]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[43]  J. Arends,et al.  Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. , 1994, Gut.

[44]  H. Furneaux,et al.  Hu neuronal proteins are expressed in proliferating neurogenic cells. , 1994, Journal of neurobiology.

[45]  M. Israel,et al.  Histogenesis of the human adrenal medulla. An evaluation of the ontogeny of chromaffin and nonchromaffin lineages. , 1990, The American journal of pathology.

[46]  H. Sather,et al.  Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. , 1985, The New England journal of medicine.

[47]  H. Varmus,et al.  Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. , 1984, Science.

[48]  K. Crickard,et al.  Isolation and identification of human fetal adrenal medullary cells in vitro. , 1982, The Journal of clinical endocrinology and metabolism.

[49]  S. Turkel,et al.  The natural history of neuroblastic cells in the fetal adrenal gland. , 1974, The American journal of pathology.

[50]  Andrea Richardson,et al.  A role for the scaffolding adapter GAB2 in breast cancer , 2006, Nature Medicine.

[51]  R. MacDonald,et al.  Zebrafish immunohistochemistry. , 1999, Methods in molecular biology.

[52]  D. Reis,et al.  Appearance of catecholamine-synthesizing enzymes during development of rat sympathetic nervous system: possible role of tissue environment. , 1979, Proceedings of the National Academy of Sciences of the United States of America.