Strategies for silencing human disease using RNA interference

Since the first description of RNA interference (RNAi) in animals less than a decade ago, there has been rapid progress towards its use as a therapeutic modality against human diseases. Advances in our understanding of the mechanisms of RNAi and studies of RNAi in vivo indicate that RNAi-based therapies might soon provide a powerful new arsenal against pathogens and diseases for which treatment options are currently limited. Recent findings have highlighted both promise and challenges in using RNAi for therapeutic applications. Design and delivery strategies for RNAi effector molecules must be carefully considered to address safety concerns and to ensure effective, successful treatment of human diseases.

[1]  G. Hannon,et al.  Unlocking the potential of the human genome with RNA interference , 2004, Nature.

[2]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[3]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[4]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[5]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[6]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[7]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[8]  K. Morris,et al.  Small Interfering RNA-Induced Transcriptional Gene Silencing in Human Cells , 2004, Science.

[9]  M. Mathews,et al.  Interactions between double-stranded RNA regulators and the protein kinase DAI , 1992, Molecular and cellular biology.

[10]  A. Riggs,et al.  The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. , 2005, RNA.

[11]  M. Amarzguioui,et al.  Approaches for chemically synthesized siRNA and vector‐mediated RNAi , 2005, FEBS letters.

[12]  Wei Ge,et al.  Synthetic shRNAs as potent RNAi triggers , 2005, Nature Biotechnology.

[13]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[14]  F Xiao-Feng Qin,et al.  Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[15]  C. Henderson,et al.  Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS , 2005, Nature Medicine.

[16]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[17]  Anil K Sood,et al.  Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. , 2005, Cancer research.

[18]  Yi Zhang,et al.  Gene therapy for proliferative ocular diseases , 2004, Expert opinion on biological therapy.

[19]  S. Akira,et al.  Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7 , 2005, Nature Medicine.

[20]  L. Greensmith,et al.  Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model , 2005, Nature Medicine.

[21]  V. Kim,et al.  The role of PACT in the RNA silencing pathway , 2006, The EMBO journal.

[22]  Patrick J. Paddison,et al.  Second-generation shRNA libraries covering the mouse and human genomes , 2005, Nature Genetics.

[23]  Theresa A. Storm,et al.  Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways , 2006, Nature.

[24]  E. Check A crucial test. , 2005, Nature medicine.

[25]  M. Behlke Progress towards in Vivo Use of siRNAs , 2006, Molecular Therapy.

[26]  J. Lieberman,et al.  Knocking down Disease with siRNAs , 2006, Cell.

[27]  Hong Yang,et al.  Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene , 2005, Nature Medicine.

[28]  Andrew D. Ellington,et al.  Aptamer mediated siRNA delivery , 2006, Nucleic acids research.

[29]  Ali Ehsani,et al.  Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells , 2002, Nature Biotechnology.

[30]  Yong Wang,et al.  Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras , 2006, Nature Biotechnology.

[31]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[32]  T. Wu,et al.  Prospects of RNA interference therapy for cancer , 2006, Gene Therapy.

[33]  Paul A. Serbinowski,et al.  A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells , 2006, Nature Biotechnology.

[34]  James A. Birchler,et al.  RNAi-mediated pathways in the nucleus , 2005, Nature Reviews Genetics.

[35]  D. Corey,et al.  Involvement of AGO1 and AGO2 in mammalian transcriptional silencing , 2006, Nature Structural &Molecular Biology.

[36]  B. Cullen,et al.  Potent and Specific Inhibition of Human Immunodeficiency Virus Type 1 Replication by RNA Interference , 2002, Journal of Virology.

[37]  B. Williams,et al.  Detection of foreign RNA: Implications for RNAi , 2005, Immunology and cell biology.

[38]  Anastasia Khvorova,et al.  3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets , 2006, Nature Methods.

[39]  J. Rossi RNAi as a treatment for HIV-1 infection. , 2006, BioTechniques.

[40]  Mark E. Davis,et al.  Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. , 2005, Cancer research.

[41]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[42]  J. Herman,et al.  Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation , 2005, Nature Genetics.

[43]  Matthias John,et al.  Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs , 2004, Nature.

[44]  Eric J Wagner,et al.  Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. , 2002, Molecular cell.

[45]  H. Paulson,et al.  RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia , 2004, Nature Medicine.

[46]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[47]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[48]  J. Lieberman,et al.  Silencing Viral Infection , 2006, PLoS medicine.

[49]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[50]  John J Rossi,et al.  Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase , 2004, Nature Biotechnology.

[51]  P. Aebischer,et al.  Viral-based modelling and correction of neurodegenerative diseases by RNA interference , 2006, Gene Therapy.

[52]  John J Rossi,et al.  Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[53]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[54]  T. Rana,et al.  siRNA function in RNAi: a chemical modification analysis. , 2003, RNA.

[55]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[56]  K. Morris,et al.  Lentiviral-mediated delivery of siRNAs for antiviral therapy , 2006, Gene Therapy.

[57]  David P. Bartel,et al.  Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes , 2005, Cell.

[58]  Elisa Izaurralde,et al.  Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. , 2005, RNA.

[59]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[60]  T. Tuschl,et al.  Mechanisms of gene silencing by double-stranded RNA , 2004, Nature.

[61]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[62]  Steven M. Wolinsky,et al.  The role of a mutant CCR5 allele in HIV–1 transmission and disease progression , 1996, Nature Medicine.

[63]  Sangdun Choi,et al.  Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy , 2005, Nature Biotechnology.

[64]  A. Judge,et al.  Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA , 2005, Nature Biotechnology.

[65]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[66]  Thomas Tuschl,et al.  RISC is a 5' phosphomonoester-producing RNA endonuclease. , 2004, Genes & development.

[67]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[68]  Zhijian J. Chen,et al.  Antiviral innate immunity pathways , 2006, Cell Research.

[69]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[70]  Matthias John,et al.  RNAi-mediated gene silencing in non-human primates , 2006, Nature.

[71]  A. Klippel,et al.  Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. , 2003, Nucleic acids research.

[72]  M. Wassenegger The Role of the RNAi Machinery in Heterochromatin Formation , 2005, Cell.

[73]  Jonathan Preall,et al.  RNAi: RISC Gets Loaded , 2005, Cell.

[74]  John J Rossi,et al.  Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells , 2006, Nature Structural &Molecular Biology.

[75]  S. Barik,et al.  Inhibition of respiratory viruses by nasally administered siRNA , 2005, Nature Medicine.

[76]  M. Stevenson,et al.  Modulation of HIV-1 replication by RNA interference , 2002, Nature.

[77]  K. Norman,et al.  MicroRNAs: expression, avoidance and subversion by vertebrate viruses , 2006, Nature Reviews Microbiology.

[78]  E. Check News Feature: A crucial test , 2005, Nature Medicine.

[79]  Keith Bowman,et al.  Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs , 2005, Nature Biotechnology.

[80]  J. Church,et al.  siRNA-DIRECTED INHIBITION OF HIV-1 INFECTION , 2003, Pediatrics.

[81]  L. Lim,et al.  Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. , 2006, RNA.

[82]  D. Patel,et al.  Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain , 2004, Nature.

[83]  Yong-mei Song,et al.  Stable expression of shRNAs in human CD34+ progenitor cells can avoid induction of interferon responses to siRNAs in vitro , 2006, Nature Biotechnology.

[84]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[85]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[86]  J. Lieberman,et al.  An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection , 2006, Nature.

[87]  M. Kay,et al.  Therapeutic short hairpin RNA expression in the liver: viral targets and vectors , 2006, Gene Therapy.

[88]  Xiaodong Wang,et al.  Argonaute2 Cleaves the Anti-Guide Strand of siRNA during RISC Activation , 2005, Cell.

[89]  R. Plasterk,et al.  Gene expression: Long-term gene silencing by RNAi , 2006, Nature.

[90]  B. Polisky,et al.  Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication , 2005, Hepatology.

[91]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[92]  Judy Lieberman,et al.  Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors , 2005, Nature Biotechnology.