A fast algorithm for simulating vesicle flows in three dimensions

Vesicles are locally-inextensible fluid membranes that can sustain bending. In this paper, we extend the study of Veerapaneni et al. [S.K. Veerapaneni, D. Gueyffier, G. Biros, D. Zorin, A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows, Journal of Computational Physics 228 (19) (2009) 7233-7249] to general non-axisymmetric vesicle flows in three dimensions. Although the main components of the algorithm are similar in spirit to the axisymmetric case (spectral approximation in space, semi-implicit time-stepping scheme), important new elements need to be introduced for a full 3D method. In particular, spatial quantities are discretized using spherical harmonics, and quadrature rules for singular surface integrals need to be adapted to this case; an algorithm for surface reparameterization is needed to ensure stability of the time-stepping scheme, and spectral filtering is introduced to maintain reasonable accuracy while minimizing computational costs. To characterize the stability of the scheme and to construct preconditioners for the iterative linear system solvers used in the semi-implicit time-stepping scheme, we perform a spectral analysis of the evolution operator on the unit sphere. By introducing these algorithmic components, we obtain a time-stepping scheme that circumvents the stability constraint on the time-step and achieves spectral accuracy in space. We present results to analyze the cost and convergence rates of the overall scheme. To illustrate the applicability of the new method, we consider a few vesicle-flow interaction problems: a single vesicle in relaxation, sedimentation, shear flows, and many-vesicle flows.

[1]  C. Pozrikidis,et al.  Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells , 2003, Annals of Biomedical Engineering.

[2]  Lexing Ying,et al.  A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains , 2006, J. Comput. Phys..

[3]  Kendall E. Atkinson,et al.  The Numerical Solution of Laplace’s Equation in Three Dimensions , 1982 .

[4]  Thomas Y. Hou,et al.  Convergence of a Boundary Integral Method for Water Waves , 1996 .

[5]  C. Pozrikidis,et al.  Effect of membrane bending stiffness on the deformation of capsules in simple shear flow , 2001, Journal of Fluid Mechanics.

[6]  E. J. Hinch,et al.  Collision of two deformable drops in shear flow , 1997, Journal of Fluid Mechanics.

[7]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[8]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[9]  E. L. Hill The Theory of Vector Spherical Harmonics , 1954 .

[10]  D. Zorin,et al.  A fast solver for the Stokes equations with distributed forces in complex geometries , 2004 .

[11]  Petia M. Vlahovska,et al.  Deformation of a surfactant-covered drop in a linear flow , 2005 .

[12]  Rudi Schmitz,et al.  Creeping flow about a spherical particle , 1982 .

[13]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[14]  Alexander Z. Zinchenko,et al.  Shear flow of highly concentrated emulsions of deformable drops by numerical simulations , 2002, Journal of Fluid Mechanics.

[15]  Jian Zhang,et al.  Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..

[16]  F. Campelo,et al.  Dynamic model and stationary shapes of fluid vesicles , 2006, The European physical journal. E, Soft matter.

[17]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[18]  R. Skalak,et al.  Motion of a tank-treading ellipsoidal particle in a shear flow , 1982, Journal of Fluid Mechanics.

[19]  Saroja Ramanujan,et al.  Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities , 1998, Journal of Fluid Mechanics.

[20]  Hua Zhou,et al.  Deformation of liquid capsules with incompressible interfaces in simple shear flow , 1995, Journal of Fluid Mechanics.

[21]  Ivan G. Graham,et al.  A high-order algorithm for obstacle scattering in three dimensions , 2004 .

[22]  Richard W. Vuduc,et al.  Petascale Direct Numerical Simulation of Blood Flow on 200K Cores and Heterogeneous Architectures , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[23]  Dominique Barthès-Biesel,et al.  Hydrodynamic interaction between two identical capsules in simple shear flow , 2007, Journal of Fluid Mechanics.

[24]  Seifert,et al.  Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  T. Biben,et al.  Steady to unsteady dynamics of a vesicle in a flow. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[27]  Ian H. Sloan,et al.  Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ${\mathbb R}^3$ , 2002, Numerische Mathematik.

[28]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[29]  C. Kelley,et al.  Convergence Analysis of Pseudo-Transient Continuation , 1998 .

[30]  Alexander Z. Zinchenko,et al.  Large–scale simulations of concentrated emulsion flows , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Steven A. Orszag,et al.  Fourier Series on Spheres , 1974 .

[32]  R. Löhner Regridding Surface Triangulations , 1996 .

[33]  C. Pozrikidis Axisymmetric motion of a file of red blood cells through capillaries , 2005 .

[34]  M I Bloor,et al.  Method for efficient shape parametrization of fluid membranes and vesicles. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[36]  U. Seifert,et al.  Influence of shear flow on vesicles near a wall: A numerical study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Alex Solomonoff,et al.  Accuracy Enhancement for Higher Derivatives using Chebyshev Collocation and a Mapping Technique , 1997, SIAM J. Sci. Comput..

[38]  Zydrunas Gimbutas,et al.  A fast and stable method for rotating spherical harmonic expansions , 2009, J. Comput. Phys..

[39]  Guy Dumas,et al.  A divergence-free spectral expansions method for three-dimensional flows in spherical-gap geometries , 1994 .

[40]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[41]  Robert H. Davis,et al.  An Efficient Algorithm for Hydrodynamical Interaction of Many Deformable Drops , 2000 .

[42]  Panagiotis Dimitrakopoulos,et al.  Interfacial dynamics in Stokes flow via a three-dimensional fully-implicit interfacial spectral boundary element algorithm , 2007, J. Comput. Phys..

[43]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[44]  Alexander Z. Zinchenko,et al.  Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm , 1999, Journal of Fluid Mechanics.

[45]  Folkmar Bornemann,et al.  Accuracy and Stability of Computing High-order Derivatives of Analytic Functions by Cauchy Integrals , 2009, Found. Comput. Math..

[46]  Seifert,et al.  Fluid Vesicles in Shear Flow. , 1996, Physical review letters.

[47]  L. G. Leal,et al.  Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes , 2007 .

[48]  C. Pozrikidis,et al.  Interfacial dynamics for Stokes flow , 2001 .

[49]  Robert H. Davis,et al.  A boundary-integral study of a drop squeezing through interparticle constrictions , 2006, Journal of Fluid Mechanics.

[50]  R. B. Jones,et al.  Friction and mobility for colloidal spheres in Stokes flow near a boundary: The multipole method and applications , 2000 .

[51]  Lin Ma,et al.  Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics , 2007, J. Comput. Phys..

[52]  Michael Shelley,et al.  Simulating the dynamics and interactions of flexible fibers in Stokes flows , 2004 .

[53]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[54]  Alexander Farutin,et al.  Numerical study of 3D vesicles under flow: discovery of new peculiar behaviors , 2009 .

[55]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[56]  Weinberg Monopole vector spherical harmonics. , 1994, Physical review. D, Particles and fields.

[57]  Alexander Z. Zinchenko,et al.  Squeezing of a periodic emulsion through a cubic lattice of spheres , 2008 .

[58]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[59]  Vittorio Cristini,et al.  An adaptive mesh algorithm for evolving surfaces: simulation of drop breakup and coalescence , 2001 .

[60]  Feng Feng,et al.  Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..

[61]  C. Misbah,et al.  Vesicles in haptotaxis with hydrodynamical dissipation , 2003, The European physical journal. E, Soft matter.

[62]  Xiangmin Jiao,et al.  Anisotropic mesh adaptation for evolving triangulated surfaces , 2006, Engineering with Computers.

[63]  George Biros,et al.  Author ' s personal copy Dynamic simulation of locally inextensible vesicles suspended in an arbitrary two-dimensional domain , a boundary integral method , 2010 .

[64]  C. Pozrikidis,et al.  Adaptive Triangulation of Evolving, Closed, or Open Surfaces by the Advancing-Front Method , 1998 .

[65]  Klaus Kassner,et al.  Phase-field approach to three-dimensional vesicle dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[67]  Alexander Z. Zinchenko,et al.  A novel boundary-integral algorithm for viscous interaction of deformable drops , 1997 .

[68]  Chaouqi Misbah,et al.  Dynamics and Similarity Laws for Adhering Vesicles in Haptotaxis , 1999 .

[69]  E. J. Hinch,et al.  Numerical simulation of a concentrated emulsion in shear flow , 1996, Journal of Fluid Mechanics.

[70]  G. Breyiannis,et al.  Simple Shear Flow of Suspensions of Elastic Capsules , 2000 .

[71]  George Biros,et al.  A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D , 2009, J. Comput. Phys..

[72]  Alexander Z. Zinchenko,et al.  Algorithm for direct numerical simulation of emulsion flow through a granular material , 2008, J. Comput. Phys..

[73]  Hong Zhao,et al.  A spectral boundary integral method for flowing blood cells , 2010, J. Comput. Phys..

[74]  George Biros,et al.  A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows , 2009, J. Comput. Phys..

[75]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .