A NEW PHYSICAL STATE FOR DE SITTER LINEAR GRAVITY

Based on conformal invariance and using Dirac's six-cone formalism, a new conformally invariant physical field equation for de Sitter (dS) linear gravity has been obtained, which corresponds to one of the unitary irreducible representations of the dS group and is denoted by $\Pi^{\pm}_{2, 1}$ in the sense of discrete series. Using ambient space notations, it has been shown that the solution to this new field equation can be written as the multiplication of a generalized symmetric polarization tensor of rank 2 and a massless conformally coupled scalar field in dS space–time. The physical tensor two-point function has been calculated in terms of the conformally coupled scalar two-point function in the ambient space formalism. It has been expressed in terms of dS intrinsic coordinates from its ambient space counterpart, which is dS-invariant and free of any divergences.

[1]  M. Dehghani EVALUATION OF THE GRAVITON TWO-POINT FUNCTION IN DE SITTER SPACE , 2010 .

[2]  M. Dehghani COVARIANT TWO-POINT FUNCTION FOR MASSLESS SPIN-2 FIELD IN DE SITTER SPACE , 2009 .

[3]  M. Dehghani,et al.  Conformally invariant 'massless' spin-2 field in the de Sitter universe , 2008, 0805.2227.

[4]  M. Takook,et al.  Conformally invariant wave equations and massless fields in de Sitter spacetime , 2005, gr-qc/0512105.

[5]  J. Gazeau,et al.  “Massive” spin-2 field in de Sitter space , 2003, hep-th/0302022.

[6]  A. Higuchi,et al.  The covariant graviton propagator in de Sitter spacetime , 2001, gr-qc/0107036.

[7]  A. Higuchi,et al.  Large-distance behaviour of the graviton two-point function in de Sitter spacetime , 2000, gr-qc/0004079.

[8]  J. Gazeau,et al.  “Massive” vector field in de Sitter space , 1999, gr-qc/9912080.

[9]  M. Laoues,et al.  MASSLESSNESS IN n-DIMENSIONS , 1998, hep-th/9806100.

[10]  R. Murenzi,et al.  Invariant Bilinear-forms On 3+2 De-sitter Space , 1989 .

[11]  Mottola,et al.  Particle creation in de Sitter space. , 1985, Physical review. D, Particles and fields.

[12]  C. Frønsdal,et al.  LINEAR CONFORMAL QUANTUM GRAVITY , 1983 .

[13]  A. Barut,et al.  On conformally covariant spin-2 and spin-3/2 equations , 1982 .

[14]  C. Frønsdal Singletons and massless, integral-spin fields on de Sitter space , 1979 .

[15]  A. Barut,et al.  Reduction of a Class of O(4, 2) Representations with Respect to SO(4, 1) and SO(3, 2) , 1970 .

[16]  A. Salam,et al.  Finite-component field representations of the conformal group , 1969 .

[17]  P. Dirac The Electron Wave Equation in De-Sitter Space , 1935 .

[18]  M. Levy-nahas Deformation and Contraction of Lie Algebras , 1967 .

[19]  R. Takahashi,et al.  Sur les représentations unitaires des groupes de Lorentz généralisés , 1963 .

[20]  J. Dixmier Représentations intégrables du groupe de De Sitter , 1961 .