Cohesive elements for thin-walled structures

A cohesive interface element for ductile tearing of thin structures modelled by plane-stress continuum or shell elements is presented which accounts for thickness reduction. This modification prevents localisation of plastic deformation in the adjacent continuum elements often inhibiting crack extension and leading to divergence of the numerical simulations. Some examples show the performance of the elements. Ductile crack extension in a plane centre-cracked panel and in a compact specimen of Al 5083 is simulated and compared with experimental data. Parametric studies on shell structures demonstrate possible applications for the analysis of residual strength of cracked aircraft fuselages.

[1]  Satya N. Atluri,et al.  Analysis of Surface Flaw in Pressure Vessels by a New 3-Dimensional Alternating Method , 1982 .

[2]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[3]  Ingo Scheider,et al.  Crack propagation analyses with CTOA and cohesive model: Comparison and experimental validation , 2013 .

[4]  Sunil Saigal,et al.  Polymer interfacial fracture simulations using cohesive elements , 1999 .

[5]  A. Needleman An analysis of decohesion along an imperfect interface , 1990 .

[6]  Jacques Besson,et al.  Predicting crack growth resistance of aluminium sheets , 2003 .

[7]  Chen Chuin-Shan,et al.  Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages , 1999 .

[8]  I. Scheider,et al.  On the practical application of the cohesive model , 2003 .

[9]  Wego Wang,et al.  The crystallization behavior of Fe77.2P18Si4.8 metallic glass , 1990 .

[10]  U. Zerbst,et al.  Structural Integrity Assessment by Models of Ductile Crack Extension in Sheet Metal , 2003 .

[11]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[12]  Thomas Siegmund,et al.  An analysis of crack growth in thin-sheet metal via a cohesive zone model , 2002 .

[13]  Huang Yuan,et al.  Verification of a Cohesive Zone Model for Ductile Fracture , 1996 .

[14]  W. Brocks,et al.  The Effect of the Traction Separation Law on the Results of Cohesive Zone Crack Propagation Analyses , 2003 .

[15]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[16]  Schwalbe,et al.  THREE‐DIMENSIONAL FINITE ELEMENT SIMULATION OF CRACK EXTENSION IN ALUMINIUM ALLOY 2024FC , 2002 .

[17]  Michael Ortiz,et al.  Finite element simulation of dynamic fracture and fragmentation of glass rods , 2000 .

[18]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[19]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[20]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[21]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[22]  G Bernauer,et al.  Micro‐mechanical modelling of ductile damage and tearing – results of a European numerical round robin , 2002 .

[23]  T. Siegmund,et al.  Prediction of the Work of Separation and Implications to Modeling , 1999 .

[24]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[25]  G. Kullmer,et al.  2D- and 3D-Mixed Mode Fracture Criteria , 2003 .

[26]  R. H. Dodds,et al.  Three-dimensional modeling of ductile crack growth in thin sheet metals: computational aspects and validation , 1999 .