Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows

We consider the adjoint-based error estimation and goal-oriented mesh refinement for single and multiple aerodynamic force coefficients as well as residual-based mesh refinement applied to various three-dimensional laminar and turbulent aerodynamic test cases defined in the ADIGMA project.

[1]  Mark Ainsworth,et al.  An adaptive refinement strategy for hp -finite element computations , 1998 .

[2]  SwitzerlandPaul HoustonOxford,et al.  Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .

[3]  P. Houston Stabilized hp { Finite Element Approximation of PartialDi erential Equations with Nonnegative Chara teristi Form , 2007 .

[4]  Endre Süli,et al.  A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.

[5]  Joseph E. Flaherty,et al.  Computational Methods for Singularly Perturbed Systems , 1998 .

[6]  P. Jimack,et al.  Toward anisotropic mesh adaption based upon sensitivity of a posteriori estimates , 2022 .

[7]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[8]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[9]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .

[10]  Ralf Hartmann Adaptive Fe Methods for Conservation Equations , 2001 .

[11]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[12]  E. Tadmor,et al.  Hyperbolic Problems: Theory, Numerics, Applications , 2003 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  E. Hall,et al.  Anisotropic adaptive refinement for discontinuous galerkin methods , 2007 .

[15]  Paul C. Fife,et al.  Second-Order Equations With Nonnegative Characteristic Form , 1973 .

[16]  Rolf Rannacher,et al.  Duality-based adaptivity in the hp-finite element method , 2003, J. Num. Math..

[17]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[18]  Ralf Hartmann,et al.  Goal-Oriented A Posteriori Error Estimation for Multiple Target Functionals , 2003 .

[19]  Ralf Hartmann,et al.  Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations , 2010, J. Comput. Phys..

[20]  I. Fejtek,et al.  Summary of code validation results for a multiple element airfoil test case , 1997 .

[21]  Weiming Cao,et al.  On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..

[22]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[23]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[24]  Paul Houston,et al.  Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity , 2009 .

[25]  Ralf Hartmann,et al.  Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation , 2005 .

[26]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[27]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[28]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[29]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations , 2004 .

[30]  Norbert Kroll,et al.  ADIGMA: A European Project on the Development of Adaptive Higher Order Variational Methods for Aerospace Applications , 2010 .

[31]  R. Bass Diffusions and Elliptic Operators , 1997 .

[32]  Emmanuil H. Georgoulis,et al.  A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods for degenerate problems , 2006 .

[33]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[34]  Tobias Leicht Anisotropic Mesh Refinement for Discontinuous Galerkin Methods in Aerodynamic Flow Simulations , 2006 .

[35]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[36]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[37]  Ralf Hartmann,et al.  Anisotropic mesh refinement for discontinuous Galerkin methods in two‐dimensional aerodynamic flow simulations , 2008 .

[38]  Abani K. Patra,et al.  A parallel adaptive strategy for hp finite element computations , 1995 .

[39]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[40]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[41]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[42]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[43]  J. Tinsley Oden,et al.  An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics , 2000 .

[44]  Paul Houston,et al.  Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Anisotropically Refined Meshes , 2007, SIAM J. Sci. Comput..

[45]  Hermann Schlichting,et al.  Aerodynamics of the airplane , 1979 .

[46]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[47]  J. Davenport Editor , 1960 .

[48]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[49]  S. Rebay,et al.  Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .

[50]  J. Melenk,et al.  An adaptive strategy for hp-FEM based on testing for analyticity , 2007 .

[51]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[52]  Yusheng Feng,et al.  hp adaptive strategy , 1992 .

[53]  Ralf Hartmann,et al.  Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations , 2007, SIAM J. Numer. Anal..

[54]  Gianfranco Chiocchia Chapter 4: Exact solutions to transonic and supersonic flows , 1984 .

[55]  Paul Houston,et al.  Adaptivity and A Posteriori Error Estimation For DG Methods on Anisotropic Meshes , 2006 .

[56]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[57]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[58]  Paul Houston,et al.  Discontinuous Galerkin methods on hp-anisotropic meshes I: a priori error analysis , 2007, Int. J. Comput. Sci. Math..

[59]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[60]  Peter K. Moore,et al.  Applications of Lobatto polynomials to an adaptive finite element method: A posteriori error estimates for HP-Adaptivity and Grid-to-Grid Interpolation , 2003, Numerische Mathematik.

[61]  R. Rannacher,et al.  A posteriori error analysis for stabilised finite element approximations of transport problems , 2000 .

[62]  R. Hartmann Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element methods , 2008 .

[63]  Emmanuil H. Georgoulis hp-Version Interior Penalty Discontinuous Galerkin Finite Element Methods on Anisotropic Meshes ∗ , 2005 .

[64]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[65]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[66]  P. Revesz Interpolation and Approximation , 2010 .

[67]  Antti Hellsten,et al.  New two-equation turbulence model for aerodynamics applications , 2004 .

[68]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[69]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[70]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[71]  Endre Süli,et al.  Sobolev Regularity Estimation for hp-Adaptive Finite Element Methods , 2003 .

[72]  Jerald L Schnoor,et al.  What the h? , 2008, Environmental science & technology.

[73]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[74]  R. Hartmann,et al.  Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .

[75]  Ralf Hartmann,et al.  Discontinuous Galerkin methods for computational aerodynamics — 3D adaptive flow simulation with the DLR PADGE code , 2010 .

[76]  J. Oden,et al.  hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel adaptive strategy , 1995 .

[77]  K. Zee Galerkin Formulation for the Poisson Problem: 1-D Analysis , 2004 .

[78]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[79]  Endre Süli,et al.  Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .

[80]  Ralf Hartmann Adaptive Finite Element Methods for the Compressible Euler Equations , 2002 .

[81]  David L. Darmofal,et al.  A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..

[82]  Christine Bernardi,et al.  An error indicator for mortar element solutions to the Stokes problem , 2001 .

[83]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[84]  Endre Süli,et al.  hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .

[85]  D. Schötzau,et al.  An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .

[86]  Norbert Heuer,et al.  hp-adaptive Two-Level Methods for Boundary Integral Equations on Curves , 2001, Computing.

[87]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[88]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[89]  Ralf Hartmann,et al.  Adaptive discontinuous Galerkin methods with shock‐capturing for the compressible Navier–Stokes equations , 2006 .

[90]  Catherine Mavriplis,et al.  Adaptive mesh strategies for the spectral element method , 1992 .

[91]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[92]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[93]  Karen Dragon Devine,et al.  Parallel adaptive hp -refinement techniques for conservation laws , 1996 .

[94]  E. Süli,et al.  hp-finite element methods for hyperbolic problems , 1999 .

[95]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[96]  Ralf Heinrich,et al.  The DLR TAU-Code: Recent Applications in Research and Industry , 2006 .