Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows
暂无分享,去创建一个
Ralf Hartmann | Joachim Held | Tobias Leicht | F. Prill | R. Hartmann | T. Leicht | F. Prill | Joachim Held
[1] Mark Ainsworth,et al. An adaptive refinement strategy for hp -finite element computations , 1998 .
[2] SwitzerlandPaul HoustonOxford,et al. Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .
[3] P. Houston. Stabilized hp { Finite Element Approximation of PartialDi erential Equations with Nonnegative Chara teristi Form , 2007 .
[4] Endre Süli,et al. A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.
[5] Joseph E. Flaherty,et al. Computational Methods for Singularly Perturbed Systems , 1998 .
[6] P. Jimack,et al. Toward anisotropic mesh adaption based upon sensitivity of a posteriori estimates , 2022 .
[7] S. Rebay,et al. High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .
[8] Jaap J. W. van der Vegt,et al. Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .
[9] R. RannacherInstitut,et al. Weighted a Posteriori Error Control in Fe Methods , 1995 .
[10] Ralf Hartmann. Adaptive Fe Methods for Conservation Equations , 2001 .
[11] Ohannes A. Karakashian,et al. Piecewise solenoidal vector fields and the Stokes problem , 1990 .
[12] E. Tadmor,et al. Hyperbolic Problems: Theory, Numerics, Applications , 2003 .
[13] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[14] E. Hall,et al. Anisotropic adaptive refinement for discontinuous galerkin methods , 2007 .
[15] Paul C. Fife,et al. Second-Order Equations With Nonnegative Characteristic Form , 1973 .
[16] Rolf Rannacher,et al. Duality-based adaptivity in the hp-finite element method , 2003, J. Num. Math..
[17] David L. Darmofal,et al. p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .
[18] Ralf Hartmann,et al. Goal-Oriented A Posteriori Error Estimation for Multiple Target Functionals , 2003 .
[19] Ralf Hartmann,et al. Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations , 2010, J. Comput. Phys..
[20] I. Fejtek,et al. Summary of code validation results for a multiple element airfoil test case , 1997 .
[21] Weiming Cao,et al. On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..
[22] Ralf Hartmann,et al. An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..
[23] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[24] Paul Houston,et al. Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity , 2009 .
[25] Ralf Hartmann,et al. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations II: Goal--Oriented A Posteriori Error Estimation , 2005 .
[26] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[27] J. V. D. Vegt,et al. Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .
[28] Marco Luciano Savini,et al. Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .
[29] Vít Dolejší,et al. On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations , 2004 .
[30] Norbert Kroll,et al. ADIGMA: A European Project on the Development of Adaptive Higher Order Variational Methods for Aerospace Applications , 2010 .
[31] R. Bass. Diffusions and Elliptic Operators , 1997 .
[32] Emmanuil H. Georgoulis,et al. A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods for degenerate problems , 2006 .
[33] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[34] Tobias Leicht. Anisotropic Mesh Refinement for Discontinuous Galerkin Methods in Aerodynamic Flow Simulations , 2006 .
[35] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[36] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[37] Ralf Hartmann,et al. Anisotropic mesh refinement for discontinuous Galerkin methods in two‐dimensional aerodynamic flow simulations , 2008 .
[38] Abani K. Patra,et al. A parallel adaptive strategy for hp finite element computations , 1995 .
[39] R. Hartmann,et al. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .
[40] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[41] I. Babuska,et al. A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .
[42] Ralf Hartmann,et al. Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..
[43] J. Tinsley Oden,et al. An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics , 2000 .
[44] Paul Houston,et al. Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Anisotropically Refined Meshes , 2007, SIAM J. Sci. Comput..
[45] Hermann Schlichting,et al. Aerodynamics of the airplane , 1979 .
[46] Gerd Kunert,et al. A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .
[47] J. Davenport. Editor , 1960 .
[48] S. Rebay,et al. GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .
[49] S. Rebay,et al. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .
[50] J. Melenk,et al. An adaptive strategy for hp-FEM based on testing for analyticity , 2007 .
[51] Weizhang Huang. Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .
[52] Yusheng Feng,et al. hp adaptive strategy , 1992 .
[53] Ralf Hartmann,et al. Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations , 2007, SIAM J. Numer. Anal..
[54] Gianfranco Chiocchia. Chapter 4: Exact solutions to transonic and supersonic flows , 1984 .
[55] Paul Houston,et al. Adaptivity and A Posteriori Error Estimation For DG Methods on Anisotropic Meshes , 2006 .
[56] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[57] PAUL HOUSTON,et al. Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..
[58] Paul Houston,et al. Discontinuous Galerkin methods on hp-anisotropic meshes I: a priori error analysis , 2007, Int. J. Comput. Sci. Math..
[59] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[60] Peter K. Moore,et al. Applications of Lobatto polynomials to an adaptive finite element method: A posteriori error estimates for HP-Adaptivity and Grid-to-Grid Interpolation , 2003, Numerische Mathematik.
[61] R. Rannacher,et al. A posteriori error analysis for stabilised finite element approximations of transport problems , 2000 .
[62] R. Hartmann. Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element methods , 2008 .
[63] Emmanuil H. Georgoulis. hp-Version Interior Penalty Discontinuous Galerkin Finite Element Methods on Anisotropic Meshes ∗ , 2005 .
[64] L. Hörmander,et al. The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .
[65] J. Tinsley Oden,et al. A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .
[66] P. Revesz. Interpolation and Approximation , 2010 .
[67] Antti Hellsten,et al. New two-equation turbulence model for aerodynamics applications , 2004 .
[68] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[69] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[70] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[71] Endre Süli,et al. Sobolev Regularity Estimation for hp-Adaptive Finite Element Methods , 2003 .
[72] Jerald L Schnoor,et al. What the h? , 2008, Environmental science & technology.
[73] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[74] R. Hartmann,et al. Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .
[75] Ralf Hartmann,et al. Discontinuous Galerkin methods for computational aerodynamics — 3D adaptive flow simulation with the DLR PADGE code , 2010 .
[76] J. Oden,et al. hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel adaptive strategy , 1995 .
[77] K. Zee. Galerkin Formulation for the Poisson Problem: 1-D Analysis , 2004 .
[78] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[79] Endre Süli,et al. Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .
[80] Ralf Hartmann. Adaptive Finite Element Methods for the Compressible Euler Equations , 2002 .
[81] David L. Darmofal,et al. A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..
[82] Christine Bernardi,et al. An error indicator for mortar element solutions to the Stokes problem , 2001 .
[83] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[84] Endre Süli,et al. hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .
[85] D. Schötzau,et al. An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .
[86] Norbert Heuer,et al. hp-adaptive Two-Level Methods for Boundary Integral Equations on Curves , 2001, Computing.
[87] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[88] Leszek Demkowicz,et al. Goal-oriented hp-adaptivity for elliptic problems , 2004 .
[89] Ralf Hartmann,et al. Adaptive discontinuous Galerkin methods with shock‐capturing for the compressible Navier–Stokes equations , 2006 .
[90] Catherine Mavriplis,et al. Adaptive mesh strategies for the spectral element method , 1992 .
[91] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[92] Leszek F. Demkowicz,et al. A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..
[93] Karen Dragon Devine,et al. Parallel adaptive hp -refinement techniques for conservation laws , 1996 .
[94] E. Süli,et al. hp-finite element methods for hyperbolic problems , 1999 .
[95] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[96] Ralf Heinrich,et al. The DLR TAU-Code: Recent Applications in Research and Industry , 2006 .