A Unifying Model for the Optimal Design of Life-testing and Burn-in

[1]  F. Spizzichino,et al.  Optimal stopping of life-testing: use of stochastic orderings in the case of conditionally exponential lifetimes , 1991 .

[2]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[3]  Elja Arjas,et al.  The Failure and Hazard Processes in Multivariate Reliability Systems , 1981, Math. Oper. Res..

[4]  I. Norros,et al.  A compensator representation of multivariate life length distributions, with applications , 1986 .

[5]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[6]  B. Bergman On reliability theory and its applications , 1985 .

[7]  Fabio Spizzichino,et al.  Bayes Burn-In Decision Procedures , 1990 .

[8]  Fabio Spizzichino Sequential burn-in procedures , 1991 .

[9]  Telba Z. Irony,et al.  The Bayesian Approach to Quality , 1993 .

[10]  C. A. Clarotti,et al.  The Bayes predictive approach in reliability theory , 1989 .

[11]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[12]  W. J. Runggaldier On Stochastic Control Concepts for Sequential Burn-in Procedures , 1993 .

[13]  Richard E. Barlow A Bayes Explanation of an Apparent Failure Rate Paradox , 1985, IEEE Transactions on Reliability.

[14]  A. N. Sirjaev,et al.  Statistical Sequential Analysis , 1973 .

[15]  J. Shanthikumar,et al.  Multivariate Conditional Hazard Rate and Mean Residual Life Functions and Their Applications , 1993 .

[16]  S. Karlin,et al.  The Theory of Decision Procedures for Distributions with Monotone Likelihood Ratio , 1956 .

[17]  Nozer D. Singpurwalla Design by Decision Theory: A Unifying Perspective on Taguchi’s Approach to Quality Engineering , 1993 .