Unifying practical uncertainty representations - I: Generalized p-boxes

There exist several simple representations of uncertainty that are easier to handle than more general ones. Among them are random sets, possibility distributions, probability intervals, and more recently Ferson's p-boxes and Neumaier's clouds. Both for theoretical and practical considerations, it is very useful to know whether one representation is equivalent to or can be approximated by other ones. In this paper, we define a generalized form of usual p-boxes. These generalized p-boxes have interesting connections with other previously known representations. In particular, we show that they are equivalent to pairs of possibility distributions, and that they are special kinds of random sets. They are also the missing link between p-boxes and clouds, which are the topic of the second part of this study.

[1]  S. Ferson,et al.  Hybrid arithmetic , 1995, Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society.

[2]  Didier Dubois,et al.  Practical representations of incomplete probabilistic knowledge , 2006, Comput. Stat. Data Anal..

[3]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[4]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[5]  Michel Grabisch,et al.  Equivalent Representations of Set Functions , 2000, Math. Oper. Res..

[6]  Gert de Cooman,et al.  n-Monotone Lower Previsions and Lower Integrals , 2005, ISIPTA.

[7]  T. Sudkamp On probability-possibility transformations , 1992 .

[8]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[9]  Didier Dubois,et al.  Knowledge-Driven versus Data-Driven Logics , 2000, J. Log. Lang. Inf..

[10]  Luis M. de Campos,et al.  Probability Intervals: a Tool for uncertain Reasoning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[11]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[12]  T. Modis,et al.  Experts in uncertainty , 1993 .

[13]  Helen M. Regan,et al.  Equivalence of methods for uncertainty propagation of real-valued random variables , 2004, Int. J. Approx. Reason..

[14]  Gert de Cooman,et al.  n-Monotone lower previsions , 2005, J. Intell. Fuzzy Syst..

[15]  G. Klir,et al.  On probability-possibility transformations , 1992 .

[16]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[17]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[18]  G. Choquet Theory of capacities , 1954 .

[19]  J. Loewenthal DECISION , 1969, Definitions.

[20]  Inés Couso,et al.  The necessity of the strong a-cuts of a fuzzy set , 2001 .

[21]  Gert de Cooman,et al.  A behavioural model for vague probability assessments , 2005, Fuzzy Sets Syst..

[22]  Didier Dubois,et al.  Random sets and fuzzy interval analysis , 1991 .

[23]  P. Walley Measures of Uncertainty in Expert Systems , 1996, Artificial Intelligence.

[24]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[25]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[26]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[27]  Robert C. Williamson,et al.  Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds , 1990, Int. J. Approx. Reason..

[28]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[29]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[30]  Thierry Denoeux,et al.  Inferring a possibility distribution from empirical data , 2006, Fuzzy Sets Syst..

[31]  Helmut Prendinger,et al.  Approximate Reasoning , 1997, EPIA.

[32]  Henry E. Kyburg,et al.  Conditions for the Existence of Belief Functions Corresponding to Intervals of Belief , 1991, AAAI.

[33]  Philippe Smets,et al.  Belief functions on real numbers , 2005, Int. J. Approx. Reason..

[34]  Philippe Smets,et al.  The Normative Representation of Quantified Beliefs by Belief Functions , 1997, Artif. Intell..

[35]  Didier Dubois,et al.  Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment , 2006, IEEE Transactions on Fuzzy Systems.

[36]  Inés Couso,et al.  Extreme points of credal sets generated by 2-alternating capacities , 2003, Int. J. Approx. Reason..

[37]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[38]  Elmar Kriegler,et al.  Utilizing belief functions for the estimation of future climate change , 2005, Int. J. Approx. Reason..

[39]  Isaac Levi,et al.  The Enterprise Of Knowledge , 1980 .

[40]  Thomas Lukasiewicz,et al.  Reasoning with imprecise probabilities , 2000, Int. J. Approx. Reason..

[41]  Lev V. Utkin,et al.  Constructing imprecise probability distributions , 2005, Int. J. Gen. Syst..

[42]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[43]  Eric Raufaste,et al.  Testing the descriptive validity of possibility theory in human judgments of uncertainty , 2003, Artif. Intell..

[44]  T. Denœux Constructing belief functions from sample data using multinomial confidence regions , 2006 .

[45]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[46]  Thierry Denoeux,et al.  Constructing belief functions from sample data using multinomial confidence regions , 2006, Int. J. Approx. Reason..

[47]  Scott Ferson,et al.  Hybrid Processing of Stochastic and Subjective Uncertainty Data , 1996 .

[48]  Arnold Neumaier,et al.  Potential Based Clouds in Robust Design Optimization , 2009 .

[49]  I. Molchanov Theory of Random Sets , 2005 .

[50]  Arnold Neumaier On the Structure of Clouds , 2002 .

[51]  E. H. Jarow Clouds , 1931, Nature.

[52]  Didier Dubois,et al.  Consonant approximations of belief functions , 1990, Int. J. Approx. Reason..

[53]  Arnold Neumaier Clouds, Fuzzy Sets, and Probability Intervals , 2004, Reliab. Comput..