In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex

[1]  P. Calabresi,et al.  Long‐term Potentiation in the Striatum is Unmasked by Removing the Voltage‐dependent Magnesium Block of NMDA Receptor Channels , 1992, The European journal of neuroscience.

[2]  J. Bargas,et al.  Patterns of excitatory and inhibitory synaptic transmission in the rat neostriatum as revealed by 4-AP. , 1994, Journal of neurophysiology.

[3]  B. Gustafsson,et al.  Hippocampal long-lasting potentiation produced by pairing single volleys and brief conditioning tetani evoked in separate afferents , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  E.L.J.M. van Luijtelaar,et al.  Spike-wave discharges and sleep spindles in rats. , 1997, Acta neurobiologiae experimentalis.

[5]  J. Wickens,et al.  Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro , 1996, Neuroscience.

[6]  R. Llinás,et al.  Postsynaptic Hebbian and non-Hebbian long-term potentiation of synaptic efficacy in the entorhinal cortex in slices and in the isolated adult guinea pig brain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Mayer,et al.  The action of N‐methyl‐D‐aspartic acid on mouse spinal neurones in culture. , 1985, The Journal of physiology.

[8]  T. Sejnowski,et al.  Associative long-term depression in the hippocampus induced by hebbian covariance , 1989, Nature.

[9]  Charles J. Wilson Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons , 1992 .

[10]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[11]  T. Sejnowski,et al.  Spatiotemporal Patterns of Spindle Oscillations in Cortex and Thalamus , 1997, The Journal of Neuroscience.

[12]  J. Connor,et al.  Long-term depression of naïve synapses in adult hippocampus induced by asynchronous synaptic activity. , 1995, Journal of neurophysiology.

[13]  Charles J. Wilson,et al.  Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. , 1994, Journal of neurophysiology.

[14]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[15]  M. Cuénod,et al.  Glutamate release in vitro from corticostriatal terminals , 1979, Brain Research.

[16]  P. Calabresi,et al.  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia , 1996, Trends in Neurosciences.

[17]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  Physiological properties and function of caudate neurons : single unit responses to stimulation of nigrostriatal, corticostriatal and thalamostriatal fibers , 1978 .

[19]  M. Sugimori,et al.  Response properties and electrical constants of caudate nucleus neurons in the cat. , 1978, Journal of neurophysiology.

[20]  R. Hall,et al.  Organization of motor and somatosensory neocortex in the albino rat , 1974 .

[21]  D. Lovinger,et al.  Synaptic transmission and modulation in the neostriatum. , 1996, International review of neurobiology.

[22]  A. Grace,et al.  Identification and characterization of striatal cell subtypes using in vivo intracellular recording in rats. I. Basic physiology and response to corticostriatal fiber stimulation , 1994, Synapse.

[23]  W. K. Cullen,et al.  Low-frequency stimulation induces homosynaptic depotentiation but not long-term depression of synaptic transmission in the adult anaesthetized and awake rat hippocampus in vivo , 1997, Neuroscience.

[24]  S Laroche,et al.  Stimulation at 1-5 Hz does not produce long-term depression or depotentiation in the hippocampus of the adult rat in vivo. , 1995, Journal of neurophysiology.

[25]  M. Steriade,et al.  Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. , 1995, Journal of neurophysiology.

[26]  W. Levy,et al.  Synapses as associative memory elements in the hippocampal formation , 1979, Brain Research.

[27]  C. Wilson,et al.  Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. , 1989, Journal of neurophysiology.

[28]  P. Herrling Pharmacology of the corticocaudate excitatory postsynaptic potential in the cat: Evidence for its mediation by quisqualateor kainate-receptors , 1985, Neuroscience.

[29]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[30]  J. Deniau,et al.  Effect of electrical stimulation of the cerebral cortex on the expression of the fos protein in the basal ganglia , 1997, Neuroscience.

[31]  J. Walsh,et al.  Neurophysiological, pharmacological and morphological properties of human caudate neurons recorded in vitro , 1994, Neuroscience.

[32]  G Bernardi,et al.  Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. , 1990, Journal of neurophysiology.

[33]  Gary Lynch,et al.  Stable depression of potentiated synaptic responses in the hippocampus with 1–5 Hz stimulation , 1990, Brain Research.

[34]  Y. Katayama,et al.  Slow rhythmic activity of caudate neurons in the cat: Statistical analysis of caudate neuronal spike trains , 1980, Experimental Neurology.

[35]  P. Calabresi,et al.  The neostriatum beyond the motor function: experimental and clinical evidence. , 1997, Neuroscience.

[36]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[37]  J. Walsh,et al.  Synaptic activation of N-methyl-d-aspartate receptors induces short-term potentiation at excitatory synapses in the striatum of the rat , 1993, Neuroscience.

[38]  S. Charpier,et al.  The lamellar organization of the rat substantia nigra pars reticulata: Segregated patterns of striatal afferents and relationship to the topography of corticostriatal projections , 1996, Neuroscience.

[39]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[40]  E. Sedgwick,et al.  The response of single units in the caudate nucleus to peripheral stimulation , 1967, The Journal of physiology.

[41]  C. Wilson,et al.  Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  D. Linden,et al.  Long-term synaptic depression. , 1995, Annual review of neuroscience.

[43]  J. Sandkühler,et al.  Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. , 1997, Journal of neurophysiology.

[44]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[45]  H. Kita Glutamatergic and gabaergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations , 1996, Neuroscience.

[46]  A. D. Smith,et al.  Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium‐size spiny neurons in the rat neostriatum , 1988, The Journal of comparative neurology.

[47]  S. Charpier,et al.  In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Y. Komatsu,et al.  Low-threshold Ca2+ channels mediate induction of long-term potentiation in kitten visual cortex. , 1992, Journal of neurophysiology.