A joint graph inference case study: the C. elegans chemical and electrical connectomes

ABSTRACT We investigate joint graph inference for the chemical and electrical connectomes of the Caenorhabditis elegans roundworm. The C. elegans connectomes consist of non-isolated neurons with known functional attributes, and there are two types of synaptic connectomes, resulting in a pair of graphs. We formulate our joint graph inference from the perspectives of seeded graph matching and joint vertex classification. Our results suggest that connectomic inference should proceed in the joint space of the two connectomes, which has significant neuroscientific implications.

[1]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[2]  Joshua T. Vogelstein,et al.  Seeded Graph Matching Via Joint Optimization of Fidelity and Commensurability. , 2014, 1401.3813.

[3]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  Minsu Cho,et al.  Progressive graph matching: Making a move of graphs via probabilistic voting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Thomas E. Nichols,et al.  Stochastic Blockmodeling of the Modules and Core of the Caenorhabditis elegans Connectome , 2014, PloS one.

[6]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[7]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[8]  Donald L Riddle,et al.  Origins of the Model , 1997 .

[9]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[10]  Mario Vento,et al.  Graph matching applications in pattern recognition and image processing , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[11]  Shai Shaham,et al.  The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme , 1993, Cell.

[12]  A. R. Meyer,et al.  Handbook of Theoretical Computer Science: Algorithms and Complexity , 1990 .

[13]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[14]  Emma K. Towlson,et al.  The Rich Club of the C. elegans Neuronal Connectome , 2013, The Journal of Neuroscience.

[15]  Francis Bach,et al.  Global alignment of protein–protein interaction networks by graph matching methods , 2009, Bioinform..

[16]  David Baker,et al.  Structure similarity measure with penalty for close non-equivalent residues , 2009, Bioinform..

[17]  Li Chen,et al.  Spectral clustering for divide-and-conquer graph matching , 2013, Parallel Comput..

[18]  Kostas Haris,et al.  Model-based morphological segmentation and labeling of coronary angiograms , 1999, IEEE Transactions on Medical Imaging.

[19]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[20]  Zhiliang Ma,et al.  Manifold Matching: Joint Optimization of Fidelity and Commensurability , 2011, 1112.5510.

[21]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[22]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Carey E. Priebe,et al.  A Consistent Adjacency Spectral Embedding for Stochastic Blockmodel Graphs , 2011, 1108.2228.

[24]  Günther Osche Die bedeutung der osmoregulation und des winkverhaltens für freilebende nematoden , 2004, Zeitschrift für Morphologie und Ökologie der Tiere.

[25]  Fernando De la Torre,et al.  Factorized Graph Matching , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[27]  Terry Caelli,et al.  An eigenspace projection clustering method for inexact graph matching , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.