Fast Sweeping Methods for Eikonal Equations on Triangular Meshes

The original fast sweeping method, which is an efficient iterative method for stationary Hamilton-Jacobi equations, relies on natural ordering provided by a rectangular mesh. We propose novel ordering strategies so that the fast sweeping method can be extended efficiently and easily to any unstructured mesh. To that end we introduce multiple reference points and order all the nodes according to their $l^p$-metrics to those reference points. We show that these orderings satisfy the two most important properties underlying the fast sweeping method: (1) these orderings can cover all directions of information propagating efficiently; (2) any characteristic can be decomposed into a finite number of pieces and each piece can be covered by one of the orderings. We prove the convergence of the new algorithm. The computational complexity of the algorithm is nearly optimal in the sense that the total computational cost consists of $O(M)$ flops for iteration steps and $O(M{\rm log}M)$ flops for sorting at the predetermined initialization step which can be efficiently optimized by adopting a linear time sorting method, where $M$ is the total number of mesh points. Extensive numerical examples demonstrate that the new algorithm converges in a finite number of iterations independent of mesh size.

[1]  Phillip Colella,et al.  Two new methods for simulating photolithography development in 3D , 1996, Advanced Lithography.

[2]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[3]  M. Sambridge,et al.  Wave front evolution in strongly heterogeneous layered media using the fast marching method , 2004 .

[4]  William W. Symes,et al.  Upwind finite-difference calculation of traveltimes , 1991 .

[5]  W. Symes,et al.  Anisotropic finite‐difference traveltimes using a Hamilton‐Jacobi solver , 1997 .

[6]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[7]  Alper Yilmaz,et al.  Level Set Methods , 2007, Wiley Encyclopedia of Computer Science and Engineering.

[8]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[9]  R. Courant Methods of mathematical physics, Volume I , 1965 .

[10]  Gerard T. Schuster,et al.  First‐arrival traveltime calculation for anisotropic media , 1993 .

[11]  Gerard T. Schuster,et al.  Finite‐difference solution of the eikonal equation along expanding wavefronts , 1992 .

[12]  S. Kružkov,et al.  GENERALIZED SOLUTIONS OF NONLINEAR FIRST ORDER EQUATIONS WITH SEVERAL INDEPENDENT VARIABLES. II , 1967 .

[13]  Jianliang Qian,et al.  Adaptive nite dierence method for traveltime and amplitude , 1999 .

[14]  Jianliang Qian,et al.  Paraxial geometrical optics for quasi-P waves: theories and numerical methods , 2002 .

[15]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[16]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[17]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[18]  P. Dupuis,et al.  Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[19]  S. Osher,et al.  The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations , 1991 .

[20]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[21]  Jianliang Qian,et al.  Adaptive Finite Difference Method For Traveltime And Amplitude , 1999 .

[22]  Hongkai Zhao,et al.  Fixed-point iterative sweeping methods for static hamilton-Jacobi Equations , 2006 .

[23]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[24]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[25]  Marizio Falcone,et al.  Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations , 1994 .

[26]  Zhao,et al.  PARALLEL IMPLEMENTATIONS OF THE FAST SWEEPING METHOD , 2007 .

[27]  Christopher M. Kuster,et al.  Computational Study of Fast Methods for the Eikonal Equation , 2005, SIAM J. Sci. Comput..

[28]  Hongkai Zhao,et al.  High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations , 2006, J. Sci. Comput..

[29]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[30]  Richard I. Cook,et al.  3-D traveltime computation using second‐order ENO scheme , 1999 .

[31]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[32]  A. Balch,et al.  A dynamic programming approach to first arrival traveltime computation in media with arbitrarily distributed velocities , 1992 .

[33]  W. Symes,et al.  Finite‐difference quasi‐P traveltimes for anisotropic media , 2001 .

[34]  Chi-Tien Lin,et al.  High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[35]  W. Symes,et al.  Paraxial eikonal solvers for anisotropic quasi-P travel times , 2001 .

[36]  J. Vidale Finite-difference calculation of travel times , 1988 .

[37]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[39]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.