Dual Role of the Adaptive Immune System in Liver Injury and Hepatocellular Carcinoma Development.

[1]  Ji Luo,et al.  NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis , 2016, Nature.

[2]  R. Moreau,et al.  Acute-on-chronic liver failure: A new syndrome that will re-classify cirrhosis. , 2015, Journal of hepatology.

[3]  B. Engelward,et al.  Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo , 2015, PLoS genetics.

[4]  M. Grompe,et al.  Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. , 2014, Cell stem cell.

[5]  H. Moch,et al.  Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. , 2014, Cancer cell.

[6]  H. Mandel,et al.  Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice , 2014, Orphanet Journal of Rare Diseases.

[7]  M. Manns,et al.  Incidence and long‐term risk of de novo malignancies after liver transplantation with implications for prevention and detection , 2013, Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.

[8]  Kristen Jepsen,et al.  Identification of Liver Cancer Progenitors Whose Malignant Progression Depends on Autocrine IL-6 Signaling , 2013, Cell.

[9]  M. Manns,et al.  The degree of liver injury determines the role of p21 in liver regeneration and hepatocarcinogenesis in mice , 2013, Hepatology.

[10]  B. Rehermann Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells , 2013, Nature Medicine.

[11]  E. van de Steeg,et al.  Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. , 2012, The Journal of clinical investigation.

[12]  T. Luedde,et al.  Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer , 2012, Gut.

[13]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[14]  J. Schug,et al.  Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. , 2011, Genes & development.

[15]  D. Adams,et al.  Mechanisms of immune-mediated liver injury. , 2010, Toxicological Sciences.

[16]  M. Kurrer,et al.  A lymphotoxin-driven pathway to hepatocellular carcinoma. , 2009, Cancer cell.

[17]  M. Manns,et al.  Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage , 2009, Hepatology.

[18]  S. Nedospasov,et al.  T cell-derived lymphotoxin regulates liver regeneration. , 2009, Gastroenterology.

[19]  M. Sporn,et al.  Activation of nuclear factor E2‐related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development , 2008, Hepatology.

[20]  Amar Deep Sharma,et al.  Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis. , 2008, Cancer cell.

[21]  J. Marrero,et al.  Diagnosis and treatment of hepatocellular carcinoma. , 2008, Gastroenterology.

[22]  Wessel N. van Wieringen,et al.  CGHcall: Calling aberrations for array CGH tumor profiles. , 2008 .

[23]  Wessel N. van Wieringen,et al.  CGHregions: Dimension Reduction for Array CGH Data with Minimal Information Loss , 2007 .

[24]  M. A. van de Wiel,et al.  CGHregions: Dimension Reduction for Array CGH Data with Minimal Information Loss , 2007, Cancer informatics.

[25]  H. Blum,et al.  Pathogenesis of hepatocellular carcinoma. , 2005, European journal of gastroenterology & hepatology.

[26]  Y. Ben-Neriah,et al.  NF-κB functions as a tumour promoter in inflammation-associated cancer , 2004, Nature.

[27]  M. Grompe,et al.  Myelomonocytic cells are sufficient for therapeutic cell fusion in liver , 2004, Nature Medicine.

[28]  P. Charneau,et al.  Bipotential mouse embryonic liver stem cell lines contribute to liver regeneration and differentiate as bile ducts and hepatocytes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Iordanov,et al.  Chronic liver disease in murine hereditary tyrosinemia type 1 induces resistance to cell death , 2004, Hepatology.

[30]  L. French,et al.  Visualization of Lymphotoxin-β and Lymphotoxin-β Receptor Expression in Mouse Embryos1 , 2002, The Journal of Immunology.

[31]  R. Tanguay,et al.  Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability. , 2001, Human molecular genetics.

[32]  F. Chisari,et al.  Immune Pathogenesis of Hepatocellular Carcinoma , 1998, The Journal of experimental medicine.

[33]  S. Lindstedt,et al.  Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I , 1995, Nature Genetics.

[34]  Philippe Soriano,et al.  Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. , 1993, Genes & development.

[35]  Rinat Abramovitch,et al.  NF-kappaB functions as a tumour promoter in inflammation-associated cancer. , 2004, Nature.

[36]  L. French,et al.  Visualization of lymphotoxin-beta and lymphotoxin-beta receptor expression in mouse embryos. , 2002, Journal of immunology.