Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni–Cu–Co–Mn–In microwire

An Ni–Cu–Co–Mn–In microwire that simultaneously exhibits a magnetic field-induced first-order magnetostructural transition (between the monoclinic six-layered modulated martensite and the cubic austenite) and huge tensile superelasticity has been developed. The huge tensile superelasticity is in agreement with theoretical calculations based on the crystal structure and lattice correspondence of austenite and martensite and the crystallographic orientation of the grains.

[1]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[2]  Y. Wang,et al.  Giant tensile superelasticity originating from two-step phase transformation in a Ni-Mn-Sn-Fe magnetic microwire , 2018, Applied Physics Letters.

[3]  Yong Zhang,et al.  Low-hysteresis tensile superelasticity in a Ni-Co-Mn-Sn magnetic shape memory microwire , 2017 .

[4]  Shaohui Li,et al.  Large and reversible inverse magnetocaloric effect in Ni48.1Co2.9Mn35.0In14.0 metamagnetic shape memory microwire , 2017 .

[5]  C. Esling,et al.  Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD , 2017, IUCrJ.

[6]  Rui Li,et al.  Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys , 2017 .

[7]  Jianfei Sun,et al.  Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique , 2017 .

[8]  C. Esling,et al.  Crystallographic insights into Ni–Co–Mn–In metamagnetic shape memory alloys , 2016 .

[9]  C. Esling,et al.  Crystal structure of modulated martensite and crystallographic correlations between martensite variants of Ni~50~Mn~38~Sn~12~ alloy , 2016 .

[10]  Konstantin P. Skokov,et al.  Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials , 2016 .

[11]  C. Esling,et al.  Crystal structure and crystallographic characteristics of martensite in Ni50Mn38Sb12 alloys , 2016 .

[12]  Jianfei Sun,et al.  Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires , 2016 .

[13]  H. Suo,et al.  Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy , 2016 .

[14]  M. Laufenberg,et al.  Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite , 2015 .

[15]  Y. Wang,et al.  Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni–Mn–Ga multifunctional alloy , 2015 .

[16]  Jun Liu,et al.  Effect of atomic order on the phase transitions of melt‐spun Ni50Mn35In15 ribbons , 2015 .

[17]  S. Hannula,et al.  Stress-induced transition from modulated 14M to non-modulated martensite in Ni–Mn–Ga alloy , 2015 .

[18]  Jian-Xin Xie,et al.  The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys , 2014 .

[19]  Henryk Szymczak,et al.  Comparison of magnetocaloric properties of the Mn 2-x Fe x P 0.5 As 0.5 (x = 1.0 and 0.7) compounds , 2014 .

[20]  Stian M. Ueland,et al.  Surface roughness-controlled superelastic hysteresis in shape memory microwires , 2014 .

[21]  C. Esling,et al.  Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation , 2014 .

[22]  Richard D. James,et al.  Enhanced reversibility and unusual microstructure of a phase-transforming material , 2013, Nature.

[23]  Richard D. James,et al.  Study of the cofactor conditions: Conditions of supercompatibility between phases , 2013, 1307.5930.

[24]  V. Prida,et al.  Ni59.0Mn23.5In17.5 Heusler alloy as the core of glass-coated microwires: Magnetic properties and magnetocaloric effect , 2012 .

[25]  L. Schultz,et al.  Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys , 2012 .

[26]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[27]  Stian M. Ueland,et al.  Oligocrystalline Shape Memory Alloys , 2012 .

[28]  C. Esling,et al.  Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon , 2012 .

[29]  J. Pérez-Landazábal,et al.  Entropy change linked to the martensitic transformation in metamagnetic shape memory alloys , 2012 .

[30]  A. Srinivasan,et al.  Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy , 2011 .

[31]  L. V. Panina,et al.  On the state‐of‐the‐art in magnetic microwires and expected trends for scientific and technological studies , 2011 .

[32]  H. Maier,et al.  Tension/compression asymmetry of functional properties in [001]-oriented ferromagnetic NiFeGaCo single crystals , 2010 .

[33]  Yong S. Chu,et al.  Identification of Quaternary Shape Memory Alloys with Near‐Zero Thermal Hysteresis and Unprecedented Functional Stability , 2010 .

[34]  A. Pathak,et al.  Magnetoresistance and magnetocaloric effect at a structural phase transition from a paramagnetic martensitic state to a paramagnetic austenitic state in Ni50Mn36.5In13.5 Heusler alloys , 2010 .

[35]  Yan Li,et al.  A highly plastic Ni50Mn25Cu18Ga7 high-temperature shape memory alloy , 2010 .

[36]  H. Maier,et al.  High-temperature superelasticity and competing microstructural mechanisms in Co49Ni21Ga30 shape memory alloy single crystals under tension , 2010 .

[37]  Gunther Eggeler,et al.  On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys , 2010 .

[38]  K. Ishida,et al.  NiMn-Based Metamagnetic Shape Memory Alloys , 2009 .

[39]  David C. Dunand,et al.  Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires , 2009 .

[40]  T. G. Woodcock,et al.  Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni–Mn–In–Co ribbons , 2009 .

[41]  M. Balli,et al.  The “colossal” magnetocaloric effect in Mn1−xFexAs: What are we really measuring? , 2009 .

[42]  Yan Feng,et al.  Investigation on martensitic transformation behavior, microstructures and mechanical properties of Fe-doped Ni–Mn–In alloys , 2009 .

[43]  J. Pons,et al.  Entropy change and effect of magnetic field on martensitic transformation in a metamagnetic Ni–Co–Mn–In shape memory alloy , 2009 .

[44]  Haluk E. Karaca,et al.  Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output , 2009 .

[45]  H. Maier,et al.  Pseudoelasticity and Cyclic Stability in Co49Ni21Ga30 Shape-Memory Alloy Single Crystals at Ambient Temperature , 2008 .

[46]  X. Moya,et al.  Magnetostrain in Multifunctional Ni-Mn Based Magnetic Shape Memory Alloys , 2008 .

[47]  K. Ishida,et al.  Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy , 2008 .

[48]  H. Maier,et al.  Inter-martensitic transitions in Ni–Fe–Ga single crystals , 2007 .

[49]  Baoshun Zhang,et al.  Giant magnetothermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys , 2007 .

[50]  X. Moya,et al.  Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In , 2007, 0704.1243.

[51]  Valery Konchits,et al.  Shape-Memory Materials , 2006 .

[52]  Z. Gao,et al.  Effect of Fe content on fracture behavior of Ni–Mn–Fe–Ga ferromagnetic shape memory alloys , 2006 .

[53]  D. Shindo,et al.  Magnetic domain structure in a metamagnetic shape memory alloy Ni45Co5Mn36.7In13.3 , 2006 .

[54]  K. Ishida,et al.  Magnetic-field-induced shape recovery by reverse phase transformation , 2006, Nature.

[55]  G. Eggeler,et al.  Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires , 2005 .

[56]  K. Ishida,et al.  Stress-strain characteristics in Ni–Ga–Fe ferromagnetic shape memory alloys , 2004 .

[57]  H. Morito,et al.  Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys , 2002 .

[58]  Ken Gall,et al.  Compressive response of NiTi single crystals , 2000, Acta Materialia.

[59]  J. Shaw Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy , 2000 .

[60]  T. Shield,et al.  Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys , 1999 .

[61]  K. Ishida,et al.  Martensitic transformations in NiMnAl β phase alloys , 1996 .

[62]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[63]  Stian M. Ueland,et al.  Superelasticity and fatigue in oligocrystalline shape memory alloy microwires , 2012 .

[64]  Haluk E. Karaca,et al.  Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals , 2006 .

[65]  Richard D. James,et al.  Martensitic transformations and shape-memory materials ☆ , 2000 .

[66]  Horia Chiriac,et al.  Amorphous glass-covered magnetic wires: Preparation, properties, applications , 1996 .