Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films

The filamentary resistance switching mechanism of a Pt∕40nm TiO2∕Pt capacitor structure in voltage sweep mode was investigated. It was unambiguously found that the conducting filaments propagate from the cathode interface and that the resistance switching is induced by the rupture and recovery of the filaments in the localized region (3–10nm thick) near the anode. The electrical conduction behavior in the high resistance state was well explained by the space charge limited current (SCLC) mechanism that occurs in the filament-free region. The various parameters extracted from the SCLC fitting supported the localized rupture and formation of filaments near the anode.