On the L2-Discrepancy for Anchored Boxes
暂无分享,去创建一个
[1] Tony Warnock,et al. Computational investigations of low-discrepancy point-sets. , 1972 .
[2] William W. L. Chen. ON IRREGULARITIES OF DISTRIBUTION II , 1983 .
[3] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[4] Stefan Heinrich,et al. Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..
[5] K. F. Roth,et al. On irregularities of distribution IV , 1979 .
[6] F. James,et al. Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers , 1996, hep-ph/9606309.
[7] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[8] J. Beck,et al. Discrepancy Theory , 1996 .
[9] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[10] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[11] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[12] J. Beck,et al. Irregularities of distribution , 1987 .
[13] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[14] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[15] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[16] Henryk Wozniakowski,et al. An intractability result for multiple integration , 1997, Math. Comput..
[17] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[18] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[19] K. F. Roth. On irregularities of distribution , 1954 .
[20] Rajeev Motwani,et al. Randomized Algorithms , 1995, SIGA.
[21] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[22] R. Graham,et al. Handbook of Combinatorics , 1995 .
[23] S. Tezuka,et al. Toward real-time pricing of complex financial derivatives , 1996 .
[24] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[25] G. Torrie,et al. Estimation of multidimensional integrals: is Monte Carlo the best method? , 1993 .
[26] Karin Frank,et al. Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..
[27] Jerome Spanier,et al. Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..