On the L2-Discrepancy for Anchored Boxes

Abstract The L 2 -discrepancy for anchored axis-parallel boxes has been used in several recent computational studies, mostly related to numerical integration, as a measure of the quality of uniform distribution of a given point set. We point out that if the number of points is not large enough in terms of the dimension (e.g., fewer than 10 4 points in dimension 30) then nearly the lowest possible L 2 -discrepancy is attained by a pathological point set, and hence the L 2 -discrepancy may not be very relevant for relatively small sets. Recently, Hickernell obtained a formula for the expected L 2 -discrepancy of certain randomized low-discrepancy set constructions introduced by Owen. We note that his formula remains valid also for several modifications of these constructions which admit a very simple and efficient implementation. We also report results of computational experiments with various constructions of low-discrepancy sets. Finally, we present a fairly precise formula for the performance of a recent algorithm due to Heinrich for computing the L 2 -discrepancy.

[1]  Tony Warnock,et al.  Computational investigations of low-discrepancy point-sets. , 1972 .

[2]  William W. L. Chen ON IRREGULARITIES OF DISTRIBUTION II , 1983 .

[3]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[4]  Stefan Heinrich,et al.  Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..

[5]  K. F. Roth,et al.  On irregularities of distribution IV , 1979 .

[6]  F. James,et al.  Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers , 1996, hep-ph/9606309.

[7]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[8]  J. Beck,et al.  Discrepancy Theory , 1996 .

[9]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[10]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[11]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[12]  J. Beck,et al.  Irregularities of distribution , 1987 .

[13]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[14]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[15]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[16]  Henryk Wozniakowski,et al.  An intractability result for multiple integration , 1997, Math. Comput..

[17]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[18]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[19]  K. F. Roth On irregularities of distribution , 1954 .

[20]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[21]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[22]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[23]  S. Tezuka,et al.  Toward real-time pricing of complex financial derivatives , 1996 .

[24]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[25]  G. Torrie,et al.  Estimation of multidimensional integrals: is Monte Carlo the best method? , 1993 .

[26]  Karin Frank,et al.  Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..

[27]  Jerome Spanier,et al.  Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..