embComp: Visual Interactive Comparison of Vector Embeddings

This article introduces embComp, a novel approach for comparing two embeddings that capture the similarity between objects, such as word and document embeddings. We survey scenarios where comparing these embedding spaces is useful. From those scenarios, we derive common tasks, introduce visual analysis methods that support these tasks, and combine them into a comprehensive system. One of embComp’s central features are overview visualizations that are based on metrics for measuring differences in the local structure around objects. Summarizing these local metrics over the embeddings provides global overviews of similarities and differences. Detail views allow comparison of the local structure around selected objects and relating this local information to the global views. Integrating and connecting all of these components, embComp supports a range of analysis workflows that help understand similarities and differences between embedding spaces. We assess our approach by applying it in several use cases, including understanding corpora differences via word vector embeddings, and understanding algorithmic differences in generating embeddings.

[1]  Katherine McDonough,et al.  cite2vec: Citation-Driven Document Exploration via Word Embeddings , 2017, IEEE Transactions on Visualization and Computer Graphics.

[2]  Florian Heimerl,et al.  Boxer: Interactive Comparison of Classifier Results , 2020, Comput. Graph. Forum.

[3]  Daniel M. Dunlavy,et al.  TopicView: Visually Comparing Topic Models of Text Collections , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[4]  Niklas Elmqvist,et al.  ConceptVector: Text Visual Analytics via Interactive Lexicon Building Using Word Embedding , 2018, IEEE Transactions on Visualization and Computer Graphics.

[5]  Marco Cuturi,et al.  Unsupervised Hyperalignment for Multilingual Word Embeddings , 2018, ICLR.

[6]  Inderjit S. Dhillon,et al.  Generalized Nonnegative Matrix Approximations with Bregman Divergences , 2005, NIPS.

[7]  Steven Franconeri,et al.  Four types of ensemble coding in data visualizations. , 2016, Journal of vision.

[8]  Boris Müller,et al.  Probing Projections: Interaction Techniques for Interpreting Arrangements and Errors of Dimensionality Reductions , 2016, IEEE Transactions on Visualization and Computer Graphics.

[9]  Wolfgang Berger,et al.  Comparative Visual Analysis of 2D Function Ensembles , 2012, Comput. Graph. Forum.

[10]  Ben Shneiderman,et al.  Exploring Distributions: Design and Evaluation , 2010 .

[11]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[12]  Qi Han,et al.  DocuCompass: Effective exploration of document landscapes , 2016, 2016 IEEE Conference on Visual Analytics Science and Technology (VAST).

[13]  Stefan Holzer,et al.  VisCoDeR: A tool for visually comparing dimensionality reduction algorithms , 2018, ESANN.

[14]  Tobias Isenberg,et al.  Vispubdata.org: A Metadata Collection About IEEE Visualization (VIS) Publications , 2017, IEEE Transactions on Visualization and Computer Graphics.

[15]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[16]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[17]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[18]  Qi Han,et al.  Visualisation and Exploration of High-Dimensional Distributional Features in Lexical Semantic Classification , 2016, LREC.

[19]  Tamara Munzner,et al.  DimStiller: Workflows for dimensional analysis and reduction , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[20]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[21]  Michael Gleicher,et al.  Task-Driven Comparison of Topic Models , 2016, IEEE Transactions on Visualization and Computer Graphics.

[22]  Kevin Duh,et al.  A framework for analyzing semantic change of words across time , 2014, IEEE/ACM Joint Conference on Digital Libraries.

[23]  Valerio Pascucci,et al.  Visual Exploration of Semantic Relationships in Neural Word Embeddings , 2018, IEEE Transactions on Visualization and Computer Graphics.

[24]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[25]  Jeffrey Heer,et al.  Latent Space Cartography: Visual Analysis of Vector Space Embeddings , 2019, Comput. Graph. Forum.

[26]  Kenney Ng,et al.  Clustervision: Visual Supervision of Unsupervised Clustering , 2018, IEEE Transactions on Visualization and Computer Graphics.

[27]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[28]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[29]  Edouard Grave,et al.  Unsupervised Alignment of Embeddings with Wasserstein Procrustes , 2018, AISTATS.

[30]  Hai Lin,et al.  Visual exploration and comparison of word embeddings , 2018, J. Vis. Lang. Comput..

[31]  Zhuanyi Huang,et al.  Parallel embeddings: a visualization technique for contrasting learned representations , 2020, IUI.

[32]  Carla E. Brodley,et al.  Dis-function: Learning distance functions interactively , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[33]  Jure Leskovec,et al.  Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change , 2016, ACL.

[34]  Gary Lupyan,et al.  Quantifying Semantic Similarity Across Languages , 2018, CogSci.

[35]  Quan Li,et al.  EmbeddingVis: A Visual Analytics Approach to Comparative Network Embedding Inspection , 2018, 2018 IEEE Conference on Visual Analytics Science and Technology (VAST).

[36]  Jeffrey Heer,et al.  GraphPrism: compact visualization of network structure , 2012, AVI.

[37]  Alex Lascarides,et al.  Interpretable Latent Spaces for Learning from Demonstration , 2018, CoRL.

[38]  Michael Gleicher,et al.  Considerations for Visualizing Comparison , 2018, IEEE Transactions on Visualization and Computer Graphics.

[39]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[40]  Tomas Mikolov,et al.  Advances in Pre-Training Distributed Word Representations , 2017, LREC.

[41]  Yang Wang,et al.  Parallax: Visualizing and Understanding the Semantics of Embedding Spaces via Algebraic Formulae , 2019, ACL.

[42]  Jeffrey Heer,et al.  Interpretation and trust: designing model-driven visualizations for text analysis , 2012, CHI.

[43]  Michel Verleysen,et al.  Quality assessment of dimensionality reduction: Rank-based criteria , 2009, Neurocomputing.

[44]  Martin Wattenberg,et al.  Embedding Projector: Interactive Visualization and Interpretation of Embeddings , 2016, ArXiv.

[45]  Jimeng Sun,et al.  Multi-layer Representation Learning for Medical Concepts , 2016, KDD.

[46]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[47]  Jarkko Venna,et al.  Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study , 2001, ICANN.

[48]  Frank van Ham,et al.  “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.

[49]  Florian Heimerl,et al.  Visual Designs for Binned Aggregation of Multi-Class Scatterplots , 2018, ArXiv.

[50]  Florian Heimerl,et al.  Interactive Analysis of Word Vector Embeddings , 2018, Comput. Graph. Forum.

[51]  K. Etemad,et al.  Discriminant analysis for recognition of human face images , 1997 .

[52]  Torsten Möller,et al.  TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees , 2018, IEEE Transactions on Visualization and Computer Graphics.

[53]  Kebin Jia,et al.  Wave2Vec: Learning Deep Representations for Biosignals , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[54]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[55]  Barbara Hammer,et al.  Visualizing the quality of dimensionality reduction , 2013, ESANN.

[56]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[57]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[58]  Mohamed Cheriet,et al.  An Empirical Evaluation of Supervised Dimensionality Reduction for Recognition , 2013, 2013 12th International Conference on Document Analysis and Recognition.

[59]  Danielle Albers Szafir,et al.  Design Factors for Summary Visualization in Visual Analytics , 2018, Comput. Graph. Forum.

[60]  E. M. Bollt,et al.  Portraits of complex networks , 2008 .

[61]  John T. Stasko,et al.  iVisClustering: An Interactive Visual Document Clustering via Topic Modeling , 2012, Comput. Graph. Forum.

[62]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.