Construction of some SBIBD (4k2, 2k2 + k, k2 + k) and Hadamard matrices with maximal excess

Abstract It is shown that SBIBD(4 k 2 , 2 k 2 + k , k 2 + k ) and Hadamard matrices with maximal excess exist for k =141, 177, 217, 231. This leaves the following odd k

[1]  Marshall Hall,et al.  A new construction for Hadamard matrices , 1965 .

[2]  C. H. Yang On Composition of Four-Symbol δ-Codes and Hadamard Matrices , 1989 .

[3]  Jennifer Seberry,et al.  Orthogonal Designs: Quadratic Forms and Hadamard Matrices , 1979 .

[4]  M. R. Best,et al.  The excess of a hadamard matrix , 1976 .

[5]  Jennifer Wallis,et al.  A construction for Hadamard arrays , 1972, Bulletin of the Australian Mathematical Society.

[6]  Jennifer Seberry,et al.  Some results on the excesses of Hadamard matrices , 1988 .

[7]  Jennifer Seberry,et al.  Addendum to further results on base sequences, disjoint complementary sequences, OD(4t; t, t, t, t) and the excess of Hadamard matrices , 1991 .

[8]  Christos Koukouvinos,et al.  Construction of some Hadamard matrices with maximum excess , 1990, Discret. Math..

[9]  Richard J. Turyn An Infinite Class of Williamson Matrices , 1972, J. Comb. Theory, Ser. A.

[10]  J. Seberry,et al.  A survey of base sequences, disjoint complementary sequences and OD(4t; t, t, t, t) , 1989 .

[11]  Stratis Kounias,et al.  On the excess of Hadamard matrices , 1988, Discret. Math..

[12]  Jennifer Seberry SBIBD(4k2, 2k2 +k,k2 +k) and Hadamard matrices of order 4k2 with maximal excess are equivalent , 1989, Graphs Comb..

[13]  Jennifer Seberry,et al.  A remark on the excess of Hadamard matrices and orthogonal designs , 1978 .

[14]  Jennifer Seberry,et al.  Multiplication of sequences with zero autocorrelation , 1994, Australas. J Comb..

[15]  A. Street,et al.  Combinatorics of experimental design , 1987 .

[16]  Jennifer Seberry Existence of SBIBD(4k2, 2k2±k, k2±k) and Hadamard matrices with maximal excess , 1991, Australas. J Comb..

[17]  Mieko Yamada On a series of Hadamard matrices of order 2t and the maximal excess of Hadamard matrices of order 22t , 1988, Graphs Comb..