Perception-Action Task Uncertainty in Time During a Naturalistic Near Optimal Combination of Sensory and Motor

[1]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[2]  M. Landy,et al.  Optimal Compensation for Changes in Task-Relevant Movement Variability , 2005, The Journal of Neuroscience.

[3]  R. Gottsdanker,et al.  Identifying the acceleration of visual targets. , 1961, British journal of psychology.

[4]  R. J. van Beers,et al.  Integration of proprioceptive and visual position-information: An experimentally supported model. , 1999, Journal of neurophysiology.

[5]  F. Lacquaniti,et al.  Representation of Visual Gravitational Motion in the Human Vestibular Cortex , 2005, Science.

[6]  Joan López-Moliner,et al.  Determining whether a ball will land behind or in front of you: Not just a combination of expansion and angular velocity , 2006, Vision Research.

[7]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[8]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[9]  David C Knill,et al.  Mixture models and the probabilistic structure of depth cues , 2003, Vision Research.

[10]  Philip N. Sabes,et al.  Flexible strategies for sensory integration during motor planning , 2005, Nature Neuroscience.

[11]  F. Lacquaniti,et al.  Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. , 2004, Journal of neurophysiology.

[12]  James Gordon,et al.  Accuracy of planar reaching movements , 1994, Experimental Brain Research.

[13]  Daniel M. Wolpert,et al.  Signal-dependent noise determines motor planning , 1998, Nature.

[14]  Melvyn A Goodale,et al.  Motor Force Field Learning Influences Visual Processing of Target Motion , 2007, The Journal of Neuroscience.

[15]  James M. Hillis,et al.  Slant from texture and disparity cues: optimal cue combination. , 2004, Journal of vision.

[16]  D. Wolpert,et al.  The role of execution noise in movement variability. , 2004, Journal of neurophysiology.

[17]  Byron M. Yu,et al.  Neural Variability in Premotor Cortex Provides a Signature of Motor Preparation , 2006, The Journal of Neuroscience.

[18]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[19]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[20]  H. Zelaznik,et al.  Disrupted Timing of Discontinuous But Not Continuous Movements by Cerebellar Lesions , 2003, Science.

[21]  M. Landy,et al.  Humans Rapidly Estimate Expected Gain in Movement Planning , 2006, Psychological science.

[22]  Anne-Marie Brouwer,et al.  Perception of acceleration with short presentation times: Can acceleration be used in interception? , 2001, Perception & psychophysics.

[23]  Anne-Marie Brouwer,et al.  Hitting moving targets: effects of target speed and dimensions on movement time , 2005, Experimental Brain Research.

[24]  R. Jacobs,et al.  Optimal integration of texture and motion cues to depth , 1999, Vision Research.

[25]  Peter W Battaglia,et al.  Humans Trade Off Viewing Time and Movement Duration to Improve Visuomotor Accuracy in a Fast Reaching Task , 2007, The Journal of Neuroscience.

[26]  A. Aldo Faisal,et al.  Stochastic Simulations on the Reliability of Action Potential Propagation in Thin Axons , 2007, PLoS Comput. Biol..

[27]  D. Rosenbaum Perception and extrapolation of velocity and acceleration. , 1975 .

[28]  Daniel M Wolpert,et al.  Bayesian integration in force estimation. , 2004, Journal of neurophysiology.

[29]  F. C. Bakker,et al.  The effects of baseball experience on movement initiation in catching fly balls. , 1997, Journal of sports sciences.

[30]  Robert J. van Beers,et al.  How humans combine simultaneous proprioceptive and visual position information , 1996, Experimental Brain Research.