Identifying the cortical substrates of interictal epileptiform activity in patients with extratemporal epilepsy: An EEG‐fMRI sequential analysis and FDG‐PET study

The aim of this study was to apply sequential analysis of electroencephalography–functional magnetic resonance imaging (EEG‐fMRI) data to study the cortical substrates related to the generation of the interictal epileptiform activity (IEA) in patients with pharmacoresistant extratemporal epilepsy.

[1]  C. Schevon,et al.  How inhibition influences seizure propagation , 2013, Neuropharmacology.

[2]  M. Walker,et al.  Epileptic Networks in Focal Cortical Dysplasia Revealed Using Electroencephalography–Functional Magnetic Resonance Imaging , 2011, Annals of neurology.

[3]  Maria Thom,et al.  The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission 1 , 2011, Epilepsia.

[4]  Louis Lemieux,et al.  Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans , 2011, NeuroImage.

[5]  P. Merlet,et al.  FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias , 2010, Neurology.

[6]  R. Tubbs,et al.  Surgery for extratemporal nonlesional epilepsy in children: a meta-analysis , 2010, Child's Nervous System.

[7]  M. Walker,et al.  EEG correlated functional MRI and postoperative outcome in focal epilepsy , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[8]  Graeme D. Jackson,et al.  Focal epileptiform spikes do not show a canonical BOLD response in patients with benign rolandic epilepsy (BECTS) , 2010, NeuroImage.

[9]  Jean Gotman,et al.  Noninvasive dynamic imaging of seizures in epileptic patients , 2009, Human brain mapping.

[10]  Carlos Falcón,et al.  Sequential analysis of fMRI images: A new approach to study human epileptic networks , 2009, Epilepsia.

[11]  Otto Muzik,et al.  Quantitative brain surface mapping of an electrophysiologic/metabolic mismatch in human neocortical epilepsy , 2009, Epilepsy Research.

[12]  S. Roper Surgical treatment of the extratemporal epilepsies , 2009, Epilepsia.

[13]  Santiago Fernández,et al.  Identifying the structures involved in seizure generation using sequential analysis of ictal-fMRI data , 2009, NeuroImage.

[14]  C. Michel,et al.  Accuracy of EEG source imaging of epileptic spikes in patients with large brain lesions , 2009, Clinical Neurophysiology.

[15]  Jeffery A. Hall,et al.  Interictal high‐frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain , 2008, Epilepsia.

[16]  J Gotman,et al.  Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. , 2008, Brain : a journal of neurology.

[17]  Jean Gotman,et al.  Hemodynamic Responses to Interictal Epileptiform Discharges in Children with Symptomatic Epilepsy , 2007, Epilepsia.

[18]  F. Leijten,et al.  EEG-fMRI in the preoperative work-up for epilepsy surgery. , 2007, Brain : a journal of neurology.

[19]  D. Nair,et al.  Subdural electrode analysis in focal cortical dysplasia , 2007, Neurology.

[20]  Jean Gotman,et al.  Negative BOLD responses to epileptic spikes , 2006, Human brain mapping.

[21]  Karl J. Friston,et al.  Hemodynamic correlates of epileptiform discharges: An EEG-fMRI study of 63 patients with focal epilepsy , 2006, Brain Research.

[22]  Jean Gotman,et al.  EEG–fMRI of epileptic spikes: Concordance with EEG source localization and intracranial EEG , 2006, NeuroImage.

[23]  Jean Gotman,et al.  Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges , 2005, NeuroImage.

[24]  David F Abbott,et al.  Cortical/subcortical BOLD changes associated with epileptic discharges , 2005, Neurology.

[25]  Jean Gotman,et al.  Analysis of the EEG–fMRI response to prolonged bursts of interictal epileptiform activity , 2005, NeuroImage.

[26]  Marnie E. Shaw,et al.  How reliable are fMRI–EEG studies of epilepsy? A nonparametric approach to analysis validation and optimization , 2005, NeuroImage.

[27]  Jean Gotman,et al.  EEG‐fMRI of focal epileptic spikes: Analysis with multiple haemodynamic functions and comparison with gadolinium‐enhanced MR angiograms , 2004, Human brain mapping.

[28]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[29]  Jean Gotman,et al.  Quantitative Interictal Subdural EEG Analyses in Children with Neocortical Epilepsy , 2003, Epilepsia.

[30]  L Tassi,et al.  Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. , 2002, Brain : a journal of neurology.

[31]  H. Lüders,et al.  Presurgical evaluation of epilepsy. , 2001, Brain : a journal of neurology.

[32]  J. S. Duncan,et al.  Functional MRI Activation of Individual Interictal Epileptiform Spikes , 2001, NeuroImage.

[33]  Colin Studholme,et al.  Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model , 2000, IEEE Transactions on Medical Imaging.

[34]  Robert Turner,et al.  A Method for Removing Imaging Artifact from Continuous EEG Recorded during Functional MRI , 2000, NeuroImage.

[35]  Otto Muzik,et al.  Is epileptogenic cortex truly hypometabolic on interictal positron emission tomography? , 2000, Annals of neurology.

[36]  S. Spencer Substrates of Localization‐Related Epilepsies: Biologic Implications of Localizing Findings in Humans , 1998, Epilepsia.

[37]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[38]  Otto Muzik,et al.  Identification of Frontal Lobe Epileptic Foci in Children Using Positron Emission Tomography , 1997, Epilepsia.

[39]  Conrad V. Kufta,et al.  FDG‐Positron Emission Tomography and Invasive EEG: Seizure Focus Detection and Surgical Outcome , 1997, Epilepsia.

[40]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[41]  R. S. Sloviter,et al.  Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. , 1987, Science.

[42]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.