Alternative polyadenylation: a twist on mRNA 3' end formation.

Regulation of gene expression by RNA processing mechanisms is now understood to be an important level of control in mammalian cells. Regulation at the level of RNA transcription, splicing, polyadenylation, nucleo-cytoplasmic transport, and translation into polypeptides has been well-studied. Alternative RNA processing events, such as alternative splicing, also have been recognized as key contributors to the complexity of mammalian gene expression. Pre-messenger RNAs (pre-mRNAs) may be polyadenylated in several different ways due to more than one polyadenylation signal, allowing a single gene to encode multiple mRNA transcripts. However, alternative polyadenylation has only recently taken the field as a major player in gene regulation. This review summarizes what is currently known about alternative polyadenylation. It covers results from bioinformatics, as well as those from investigations of viral and tissue-specific studies and, importantly, will set the stage for what is yet to come.