Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle

A mobile microrobot is defined as a robot with a size ranging from 1 in3 down to 100 µm3 and a motion range of at least several times the robot's length. Mobile microrobots have a great potential for a wide range of mid-term and long-term applications such as minimally invasive surgery, inspection, surveillance, monitoring and interaction with the microscale world. A systematic study of the state of the art of locomotion for mobile microrobots shows that there is a need for efficient locomotion solutions for mobile microrobots featuring several degrees of freedom (DOF). This thesis proposes and studies a new locomotion concept based on stepping motion considering a decoupling of the two essential functions of a locomotion principle: slip generation and slip variation. The proposed "Modulated Friction Inertial Drive" (MFID) principle is defined as a stepping locomotion principle in which slip is generated by the inertial effect of a symmetric, axial vibration, while the slip variation is obtained from an active modulation of the friction force. The decoupling of slip generation and slip variation also has lead to the introduction of the concept of a combination of on-board and off-board actuation. This concept allows for an optimal trade-off between robot simplicity and power consumption on the one hand and on-board motion control on the other hand. The stepping motion of a MFID actuator is studied in detail by means of simulation of a numeric model and experimental characterization of a linear MFID actuator. The experimental setup is driven by piezoelectric actuators that vibrate in axial direction in order to generate slip and in perpendicular direction in order to vary the contact force. After identification of the friction parameters a good match between simulation and experimental results is achieved. MFID motion velocity has shown to depend sinusoidally on the phase shift between axial and perpendicular vibration. Motion velocity also increases linearly with increasing vibration amplitudes and driving frequency. Two parameters characterizing the MFID stepping behavior have been introduced. The step efficiency ηstep expresses the efficiency with which the actuator is capable of transforming the axial vibration in net motion. The force ratio qF evaluates the ease with which slip is generated by comparing the maximum inertial force in axial direction to the minimum friction force. The suitability of the MFID principle for mobile microrobot locomotion has been demonstrated by the development and characterization of three locomotion modules with between 2 and 3 DOF. The microrobot prototypes are driven by piezoelectric and electrostatic comb drive actuators and feature a characteristic body length between 20 mm and 10 mm. Characterization results include fast locomotion velocities up to 3 mm/s for typical driving voltages of some tens of volts and driving frequencies ranging from some tens of Hz up to some kHz. Moreover, motion resolutions in the nanometer range and very low power consumption of some tens of µW have been demonstrated. The advantage of the concept of a combination of on-board and off-board actuation has been demonstrated by the on-board simplicity of two of the three prototypes. The prototypes have also demonstrated the major advantage of the MFID principle: resonance operation has shown to reduce the power consumption, reduce the driving voltage and allow for simple driving electronics. Finally, with the fabrication of 2 × 2 mm2 locomotion modules with 2 DOF, a first step towards the development of mm-sized mobile microrobots with on-board motion control is made.

[1]  K. Besocke,et al.  An easily operable scanning tunneling microscope , 1987 .

[2]  Jan Peirs,et al.  A microturbine for electric power generation , 2002 .

[3]  Sylvain Martel,et al.  Fundamental Principles and Issues of High-speed Piezoactuated Three-legged Motion for Miniature Robots Designed for Nanometer-scale Operations , 2005, Int. J. Robotics Res..

[4]  Toshiro Higuchi,et al.  An ultrasonic X-Y stage using 10 MHz surface acoustic waves , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[5]  A. Bergander,et al.  Toward the personal factory? , 2001, Optics East.

[6]  Ted Hubbard,et al.  Planar frictional micro-conveyors with two degrees of freedom , 2008 .

[7]  Fumihito Arai,et al.  Micro mechatronics and micro actuators , 1996 .

[8]  Victor M. Bright,et al.  Prototype microrobots for micro-positioning and micro-unmanned vehicles , 2000 .

[9]  Eui-Hyeok Yang,et al.  A normally latched, large-stroke, inchworm microactuator , 2007 .

[10]  Rodolfo Rabe,et al.  Compact test platform for in-situ indentation and scratching inside a scanning electron microscope (SEM) , 2006 .

[11]  A. Bergander,et al.  Mobile cm3-microrobots with tools for nanoscale imaging and micromanipulation , 2004 .

[12]  Jean-Marc Breguet,et al.  Flexible micro manipulation platform based on tethered cm/sup 3/-sized mobile micro robots , 2005, 2005 IEEE International Conference on Robotics and Biomimetics - ROBIO.

[13]  Roland Siegwart,et al.  The autonomous micro robot "Alice": a platform for scientific and commercial applications , 1998, MHA'98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. - Creation of New Industry - (Cat. No.98TH8388).

[14]  H. Hirata,et al.  Design of a traveling wave type ultrasonic motor , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[16]  D. Pohl Dynamic piezoelectric translation devices , 1987 .

[17]  Bradley J. Nelson,et al.  Tutorial - Robotics in the small Part II: Nanorobotics , 2007, IEEE Robotics & Automation Magazine.

[18]  Warren E. Dixon,et al.  Design of a piezoelectric meso-scale mobile robot: a compliant amplification approach , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  K. Pister,et al.  Microelectromechanical Components For Articulated Microrobots , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[20]  T. Ikehara,et al.  Optically-driven actuator using photo-induced phase-transition material , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[21]  Arvid Bergander Control, wear testing & integration of stick-slip micropositioning , 2004 .

[22]  Paolo Dario,et al.  A mobile microrobot actuated by a new electromagnetic wobble micromotor , 1998 .

[23]  G. Alici,et al.  Performance Quantification of Conducting Polymer Actuators for Real Applications: A Microgripping System , 2007, IEEE/ASME Transactions on Mechatronics.

[24]  Dzung Viet Dao,et al.  Straight movement of micro containers based on ratchet mechanisms and electrostatic comb-drive actuators , 2006 .

[25]  J. Samitier,et al.  Reduced Dimensions Autonomous AFM System for working in Microbiorobotics , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[26]  Jerome Carlier,et al.  Virtual reality and high-accuracy vision feedback as key information for microrobot telemanipulation , 1996, Other Conferences.

[27]  Jong-Oh Park,et al.  Inchworm-Like Microrobot for Capsule Endoscope , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[28]  J. Harb,et al.  Microscopic Nickel-Zinc Batteries for Use in Autonomous Microsystems , 2001 .

[29]  Stefan Johansson,et al.  Gentle dry etching of P(VDF-TrFE) multilayer micro actuator structures by use of an inductive coupled plasma , 2008 .

[30]  S. Hirai,et al.  Microparts Feeding by a Saw-Tooth Surface , 2006, IEEE/ASME Transactions on Mechatronics.

[31]  Akihiro Torii,et al.  A miniature actuator with electromagnetic elements , 2001 .

[32]  M. Allen,et al.  A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply , 1995 .

[33]  Takeshi Morita,et al.  Miniature piezoelectric motors , 2003 .

[34]  Giovanni Muscato,et al.  PLIF: piezo light intelligent flea-new micro-robots controlled by self-learning techniques , 1997, Proceedings of International Conference on Robotics and Automation.

[35]  Urban Simu Piezoactuators for Miniature Robots , 2002 .

[36]  Yutaka Yamagata,et al.  Precise Positioning Mechanism Utilizing Rapid Deformations of Piezoelectric Elements (2nd Report) , 1992 .

[37]  Toshi Takamori,et al.  An elliptic friction drive element using an ICPF actuator , 1997 .

[38]  Kalee Thompson The World's Smallest Robot , 2005 .

[39]  Branislav Borovac,et al.  Development of platform for micro-positioning actuated by piezo-legs , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[40]  Jonathan A. Wickert,et al.  An Ultrasonic Standing-wave-actuated Nano-positioning Walking Robot: Piezoelectric-metal Composite Beam Modeling , 2006 .

[41]  Reymond Clavel,et al.  Micro/nanofactory: concept and state of the art , 2000, SPIE Optics East.

[42]  Minoru Kurosawa,et al.  Nano meter stepping drive of surface acoustic wave motor , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[43]  Sylvain Martel,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < Cooling an Array of High-powered Miniature Robots Using Forced Air Convection , 2022 .

[44]  Toshiro Higuchi,et al.  Application of Electromagnetic Impulsive Force to Precise Positioning , 1987 .

[45]  Dominiek Reynaerts,et al.  Shape memory micro-actuation for a gastro-intestinal intervention system , 1999 .

[46]  S. Martel,et al.  Initial Design of a Bacterial Actuated Microrobot for Operations in an Aqueous Medium , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[47]  D. Campolo,et al.  Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  W. A. Morcos,et al.  On the Design of Oscillating Conveyers , 1969 .

[49]  Urban Simu,et al.  Analysis of quasi-static and dynamic motion mechanisms for piezoelectric miniature robots , 2006 .

[50]  Urban Simu,et al.  Evaluation of a monolithic piezoelectric drive unit for a miniature robot , 2002 .

[51]  Paolo Dario,et al.  Micromanipulation, communication and swarm intelligence issues in a swarm microrobotic platform , 2006, Robotics Auton. Syst..

[52]  Man-Tian Li,et al.  A high precise mobile positioning microrobot with macro/micro drivers , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[53]  Hiroshi Fukushima,et al.  Mechanical analysis for micro mobile machine with piezoelectric element , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[54]  Heinz Wörn,et al.  JaMOS-A MDL 2 ǫ based Operating System for Swarm Micro Robotics , 2007 .

[55]  Paolo Dario,et al.  Microactuators for microrobots: a critical survey , 1992 .

[56]  S. Ueha,et al.  Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor , 1985 .

[57]  Roland Siegwart,et al.  A robot system for automated handling in micro-world , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[58]  Ohmi Fuchiwaki,et al.  Flexible micro-processing by multiple microrobots in SEM , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[59]  Jean-Marc Breguet,et al.  Stick and slip actuators: design, control, performances and applications , 1998, MHA'98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. - Creation of New Industry - (Cat. No.98TH8388).

[60]  Urban Simu,et al.  A review on actuation principls for few cubic millimeter sized mobile micro-robots , 2006 .

[61]  A. Bergander,et al.  Monolithic piezoelectric push-pull actuators for inertial drives , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[62]  J.-D. Nicoud Microengineering: when is small too small? Nanoengineering: when is large too large? , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[63]  Heinz Wörn,et al.  The MiCRoN Robot Project , 2007, AMS.

[64]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[65]  Byungkyu Kim,et al.  An earthworm-like micro robot using shape memory alloy actuator , 2006 .

[66]  L.A. Starman,et al.  Autonomous power-scavenging MEMS robots , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[67]  Kristofer S. J. Pister,et al.  Design of low-power silicon articulated microrobots , 2001 .

[68]  K. Shono,et al.  High-voltage micro solar cell arrays of GaAs with output voltage up to 100 V , 2002, IEEE/LEOS International Conference on Optical MEMs.

[69]  Metin Sitti,et al.  An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[70]  Jan G. Smits Design considerations of a piezoelectric-on-silicon microrobot , 1992 .

[71]  Michael Curt Elwenspoek,et al.  Comb-drive actuators for large displacements , 1996 .

[72]  Stephane Regnier,et al.  Micro manipulation by adhesion with two collaborating mobile micro robots , 2005 .

[73]  Wentai Liu,et al.  Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[74]  Robert Puers,et al.  Wireless energy transfer for stand-alone systems: a comparison between low and high power applicability , 2001 .

[75]  S. Martel,et al.  Embedded Piezo-actuation System for Automatic Motion Control of a Fleet of Miniature Robots Operating on a Synchronized Vibrating Platform , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[76]  Zhenbo Li,et al.  Design of an omni-directional mobile microrobot (OMMR-I) for a micro-factory with 2 mm electromagnetic micromotors , 2005, Robotica.

[77]  Raymond H. Byrne,et al.  Miniature mobile robots for plume tracking and source localization research , 2001 .

[78]  Ja Choon Koo,et al.  Artificial annelid robot driven by soft actuators , 2007, Bioinspiration & biomimetics.

[79]  K. Ikuta,et al.  Tiny silent linear cybernetic actuator driven by piezoelectric device with electromagnetic clamp , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[80]  Mir Behrad Khamesee,et al.  Design and control of a microrobotic system using magnetic levitation , 2002 .

[81]  Gregory T. A. Kovacs,et al.  MODELING AND CONTROL OF A 3-DEGREE-OF-FREEDOM WALKING MICROROBOT , 2006 .

[82]  Yutaka Yamagata,et al.  Improvement of Velocity of Impact Drive Mechanism by Controlling Friction. , 1992 .

[83]  G. Boothroyd,et al.  Analysis of vibratory feeding where the track has directional friction characteristics , 1988 .

[84]  Wolfgang Zesch,et al.  Inertial drives for micro- and nanorobots: two novel mechanisms , 1995, Other Conferences.

[85]  David S. Barrett,et al.  Intelligence for miniature robots , 1989 .

[86]  I. Hunter,et al.  A comparison of muscle with artificial actuators , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[87]  T. Fukuda,et al.  Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[88]  G. Stemme,et al.  A robust micro conveyer realized by arrayed polyimide joint actuators , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[89]  G. Winkler,et al.  Analysing the vibrating conveyor , 1978 .

[90]  W. M. Mansour,et al.  The Mechanism of Conveyance With Bristled Tracks , 1975 .

[91]  Bruce Randall Donald,et al.  Programmable Force Fields for Distributed Manipulation, with Applications to MEMS Actuator Arrays and Vibratory Parts Feeders , 1999, Int. J. Robotics Res..

[92]  Isao Shimoyama,et al.  Scaling in microrobots , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[93]  P Fiorini,et al.  Micropower generation with microgasturbines: A challenge , 2007 .

[94]  H. Fujita,et al.  An electrostatic inertia-driven micro rover , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[95]  Maria Chiara Carrozza,et al.  A microrobot for colonoscopy , 1996, MHS'96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science.

[96]  Roland Siegwart,et al.  Fascination of down scaling — Alice the sugar cube robot , 2001 .

[97]  A. Hubert Microrobotique : micromanipulation et microrobots autonomes , 2003 .

[98]  Manel Puig-Vidal,et al.  Manipulating biological cells with a micro-robot cluster , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[99]  Isao Shimoyama,et al.  Microrobot locomotion in a mechanical vibration field , 1994, Adv. Robotics.

[100]  William C. Tang,et al.  Laterally driven polysilicon resonant microstructures , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[101]  G. Caprari Autonomous Micro-Robots: Applications and Limitations , 2003 .

[102]  Terunobu Akiyama,et al.  Controlled stepwise motion in polysilicon microstructures , 1993 .

[103]  Akira Sasaki,et al.  Miniature robots for a desktop flexible micro manufacturing system , 1996 .

[104]  R. Muller,et al.  Linear microvibromotor for positioning optical components , 1995 .

[105]  Bradley J. Nelson,et al.  Actuation, Sensing, and Fabrication for In Vivo Magnetic Microrobots , 2004, ISER.

[106]  Göran Stemme,et al.  A WALKING SILICON MICRO-ROBOT , 1999 .

[107]  Norman C. Tien,et al.  Low voltage electrothermal vibromotor for silicon optical bench applications , 2000 .

[108]  Satoshi Konishi,et al.  Parallel Linear Actuator System with High Accuracy and Large Stroke , 2002 .

[109]  Minoru Kurosawa,et al.  NANOMETER RESOLUTION 2-D IN-PLANE SAW MOTOR , 2004 .

[110]  T. Hubbard,et al.  Force, deflection and power measurements of toggled microthermal actuators , 2004 .

[111]  R. Yoshida,et al.  Self‐Walking Gel , 2007 .

[112]  Niklas Snis,et al.  Actuators for autonomous microrobots , 2008 .

[113]  Sergej Fatikow,et al.  Development of mobile versatile nanohandling microrobots: design, driving principles, haptic control , 2005, Robotica.

[114]  Shaoze Yan,et al.  A 3-DOFs mobile robot driven by a piezoelectric actuator , 2006 .

[115]  Benedetto Allotta,et al.  Micromechatronics in medicine , 1996 .

[116]  W. Riethmuller,et al.  Applications of silicon microactuators based on bimorph structures , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[117]  G.-A. Racine,et al.  Hybrid ultrasonic micromachined motors , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[118]  Craig D. McGray,et al.  Power delivery and locomotion of untethered microactuators , 2003 .

[119]  Evangelos Papadopoulos,et al.  Analysis and Design of a Novel Mini-platform Employing Vibration Micro-motors , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[120]  Nobuaki Kawahara,et al.  Development of in‐pipe microrobot using microwave energy transmission , 2001 .

[121]  I. Kassim,et al.  Locomotion techniques for robotic colonoscopy , 2006, IEEE Engineering in Medicine and Biology Magazine.

[122]  W. Driesen,et al.  Applications of Piezo-Actuated Micro-Robots in Micro-Biology and Material Science , 2007, 2007 International Conference on Mechatronics and Automation.

[123]  Tetsuro Yabuta,et al.  A Miniature Mobile Robot Using Piezo Vibration for Mobility in a Thin Tube , 1993 .

[124]  Kiyoshi Ioi,et al.  A mobile micro-robot using centrifugal forces , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[125]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[126]  K. Pister,et al.  An SOI process for fabrication of solar cells, transistors and electrostatic actuators , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[127]  Sarah Bergbreiter 1 Design of a 2-DOF Low Power Microrobot , 2000 .

[128]  Dan Reznik,et al.  Analysis of part motion on a longitudinally vibrating plate , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[129]  Jake J. Abbott,et al.  Robotics in the Small, Part I: Microbotics , 2007, IEEE Robotics & Automation Magazine.

[130]  Gregory T. A. Kovacs,et al.  OMNIDIRECTIONAL WALKING MICROROBOT REALIZED BY THERMAL MICROACTUATOR ARRAYS , 2001 .

[131]  Kenji Uchino,et al.  New applications of photostrictive ferroics , 1997 .

[132]  Urban Simu,et al.  Fabrication of monolithic piezoelectric drive units for a miniature robot , 2002 .

[133]  Kenji Uchino,et al.  Micro Walking Machines Using Piezoelectric Actuators , 1989, J. Robotics Mechatronics.

[134]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[135]  W Seemann A linear ultrasonic traveling wave motor of the ring type , 1996 .

[136]  Dzung Viet Dao,et al.  A micro transportation system (MTS) with large movement of containers driven by electrostatic comb-drive actuators , 2007 .

[137]  Tadashi Hattori,et al.  Microwave Energy Transmission System for Microrobot , 1997 .

[138]  Dimitris P. Tsakiris,et al.  Polychaete-Like Undulatory Robotic Locomotion in Unstructured Substrates , 2007, IEEE Transactions on Robotics.

[139]  A. J. Shuskus,et al.  Fabrication and test of an efficient photovoltaic cell for laser optical power transmission , 1992, IEEE Photonics Technology Letters.

[140]  Sergej Fatikow Automated micromanipulation desktop station based on mobile piezoelectric microrobots , 1996, Other Conferences.

[141]  Ian W. Hunter,et al.  Techniques for continuous power delivery to a group of 15-watt +3.3 to ±150 VDC miniature wireless instrumented and fast-stepping robots through several thousand intermittent contacts between the robot's legs and the walking surface , 2000, SPIE Optics East.

[142]  Antoine Ferreira,et al.  Dynamic modeling and control of a conveyance microrobotic system using active friction drive , 2003 .

[143]  R. L. Smith,et al.  Electrostatic inchworm microsystem with long range translation , 2004 .

[144]  Sergej Fatikow,et al.  Microsystem Technology and Microrobotics , 1997, Springer Berlin Heidelberg.

[145]  K. Uchino,et al.  Photostrictive actuators , 2001 .

[146]  Paolo Dario,et al.  Design and fabrication of PZT-actuated tools for micromanipulation , 2006 .

[147]  Miko Elwenspoek,et al.  Modeling, design and testing of the electrostatic shuffle motor , 1998 .

[148]  T. Shigematsu,et al.  Miniaturized SAW motor with 100 MHz driving frequency , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[149]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[150]  Sylvain Martel,et al.  NanoRunner: a very small wireless robot with three piezoactuated legs suited for design experimentations and validations through preprogrammed behaviors , 2000, SPIE Optics East.

[151]  R. Maboudian,et al.  High-performance surface-micromachined inchworm actuator , 2003, Journal of Microelectromechanical Systems.

[152]  Sergej Fatikow,et al.  Microrobot System for Automatic Nanohandling Inside a Scanning Electron Microscope , 2007 .

[153]  M.-A. Dubois,et al.  PZT thin film actuated elastic fin micromotor , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[154]  W. Driesen,et al.  Ultrasonic monolithic piezoelectric multi DOF actuators for mobile microrobots , 2006 .

[155]  Hannes Bleuler,et al.  Position feedback for microrobots based on scanning probe microscopy , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[156]  Kristin L. Wood,et al.  Feasibility of micro power supplies for MEMS , 1997 .

[157]  Dominic R. Frutiger,et al.  Wireless resonant magnetic microactuator for untethered mobile microrobots , 2008 .

[158]  Luigi Fortuna,et al.  Development of autonomous, mobile micro-electro-mechanical devices , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[159]  Armin Sulzmann,et al.  New developments in 3D computer vision for microassembly , 1998, Other Conferences.

[160]  A. Ijspeert,et al.  From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model , 2007, Science.

[161]  Urban Simu,et al.  High accuracy piezoelectric-based microrobot for biomedical applications , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[162]  Linzhi Sun,et al.  Micro robot in small pipe with electromagnetic actuator , 1998, MHA'98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. - Creation of New Industry - (Cat. No.98TH8388).

[163]  Isao Shimoyama,et al.  Insect-model based microrobot , 1997, Robotics Auton. Syst..

[164]  T. Hattori,et al.  Shell-body fabrication for micromachines , 1995 .

[165]  Jianghao Li,et al.  An omni-directional mobile millimeter-sized microrobot with 3-mm electromagnetic micromotors for a micro-factory , 2007, Adv. Robotics.

[166]  Urban Simu,et al.  Monolithic fabrication of multilayer P(VDF-TrFE) cantilevers , 2008 .

[167]  Michaël Gauthier,et al.  Modelling of a planar magnetic micropusher for biological cell manipulations , 2007 .

[168]  A. Arbat,et al.  An ultra low power IC for an autonomous mm3-sized microrobot , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[169]  J. Gao,et al.  Traveling Magnetic Field for Homogeneous Wireless Power Transmission , 2007, IEEE Transactions on Power Delivery.

[170]  Russell M. Taylor,et al.  Thermally actuated untethered impact-driven locomotive microdevices , 2006 .

[171]  Urban Simu,et al.  A piezoelectric disc-shaped motor using a quasi-static walking mechanism , 2005 .

[172]  J. Barbera,et al.  Contact mechanics , 1999 .

[173]  Paolo Dario,et al.  Design of a Pill-Sized 12-legged Endoscopic Capsule Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[174]  O. Fuchiwaki,et al.  Automatic micro-indentation and inspection system by piezo driven micro robot with multiple inner sensors , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[175]  Ted Hubbard,et al.  Development of a long-range untethered frictional microcrawler , 2007 .

[176]  Metin Sitti,et al.  Microscale and nanoscale robotics systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[177]  T. Sakakibara Development of High Voltage Photovoltaic Micro-Devices for Driving Micro Actuators , 1997 .

[178]  José L. Pons,et al.  Emerging Actuator Technologies: A Micromechatronic Approach , 2005 .

[179]  Teru Hayashi Micro Mechanisms , 1991, J. Robotics Mechatronics.

[180]  M. Baltzer,et al.  A linear stepping actuator in surface micromachining technology for low voltages and large displacements , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[181]  Patrice Minotti,et al.  Control of a multidegree of freedom standing wave ultrasonic motor driven precise positioning system , 1997 .

[182]  David S. Barrett,et al.  The world's largest one cubic inch robot , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[183]  Nobuaki Kawahara,et al.  Wireless link system for communication and energy transmission of microrobot , 2001, MHS2001. Proceedings of 2001 International Symposium on Micromechatronics and Human Science (Cat. No.01TH8583).

[184]  T. Kaneko,et al.  In-pipe wireless micro locomotive system , 1999, MHS'99. Proceedings of 1999 International Symposium on Micromechatronics and Human Science (Cat. No.99TH8478).

[185]  Gert Cauwenberghs,et al.  Power harvesting and telemetry in CMOS for implanted devices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[186]  Geeta M Patel,et al.  Nanorobot: A versatile tool in nanomedicine , 2006, Journal of drug targeting.

[187]  Fumihito Arai,et al.  High speed random separation of microobject in microchip by laser manipulator and dielectrophoresis , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[188]  Tamio Tanikawa,et al.  Desktop Machining Microfactory , 2001 .

[189]  Shuxiang Guo,et al.  Development of an underwater biomimetic microrobot with compact structure and flexible locomotion , 2007 .

[190]  Evangelos Papadopoulos,et al.  Analysis, design and control of a planar micro-robot driven by two centripetal-force actuators , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[191]  R. Fontaine,et al.  Development of an hexapod biomicrorobot with Nafion-Pt IPMC microlegs , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[192]  A. Bergander,et al.  Energy consumption of piezoelectric actuators for inertial drives , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[193]  K. Pister,et al.  Single mask, large force, and large displacement electrostatic linear inchworm motors , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[194]  Urban Simu,et al.  Piezoelectric drive platform for cm3-sized autonomous robot, , 2004 .

[195]  Sylvain Martel,et al.  Three-legged wireless miniature robots for mass-scale operations at the sub-atomic scale , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[196]  Futoshi Iwata,et al.  Miniature robot with micro capillary capturing probe , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[197]  Giancarlo Corradini,et al.  A modular actuator system for miniature positioning systems , 2008 .

[198]  Jong-Oh Park,et al.  A ciliary based 8-legged walking micro robot using cast IPMC actuators , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[199]  Heinz Woern,et al.  Moire-based positioning system for microrobots , 2003, SPIE Optical Metrology.

[200]  G. H. Lim,et al.  On the conveying velocity of a vibratory feeder , 1997 .

[201]  Takaharu Idogaki,et al.  Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[202]  Ronald S. Fearing,et al.  Powering 3 Dimensional Microrobots: Power Density Limitations , 1998 .

[203]  L. L. Chu,et al.  Bent-beam electrothermal actuators-Part II: Linear and rotary microengines , 2001 .

[204]  T. Higuchi,et al.  Micro impact drive mechanisms using optically excited thermal expansion , 1997 .

[205]  Ian W. Hunter,et al.  A comparative analysis of actuator technologies for robotics , 1992 .

[206]  Miko Elwenspoek,et al.  Design, fabrication and testing of laterally driven electrostatic motors employing walking motion and mechanical leverage , 2000 .

[207]  F. Altpeter Friction modeling, identification and compensation , 1999 .

[208]  F. Kaegi,et al.  A nanomanipulation platform for semi automated manipulation of nano-sized objects using mobile microrobots inside a Scanning Electron Microscope , 2008 .

[209]  K. Ikuta,et al.  Miniature cybernetic actuators using piezoelectric device , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[210]  Sylvain Martel,et al.  NanoWalker: a fully autonomous highly integrated miniature robot for nanoscale measurements , 1999, Industrial Lasers and Inspection.

[211]  Ho Nam Kwon,et al.  Design and characterization of a micromachined inchworm motor with thermoelastic linkage actuators , 2002 .

[212]  D. Ruffieux,et al.  An AlN piezoelectric microactuator array , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[213]  Jun Ni,et al.  Development of a piezoelectric multi-axis stage based on stick-and-clamping actuation technology , 2007 .

[214]  Zengxi Pan,et al.  Miniature pipe robots , 2003, Ind. Robot.

[215]  Jean-Marc Breguet Actionneurs "stick and slip" pour micro-manipulateurs , 1998 .

[216]  K. Pister,et al.  Solar powered 10 mg silicon robot , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[217]  Heinz Wörn,et al.  The I-SWARM project , 2006, ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication.

[218]  I. Hayashi,et al.  Micro moving robotics , 1998, MHA'98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. - Creation of New Industry - (Cat. No.98TH8388).

[219]  Jean-Marc Breguet,et al.  Unified mechanical approach to piezoelectric bender modeling , 2007 .

[220]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[221]  Philippe Renaud,et al.  A 4-degrees-of-freedom microrobot with nanometer resolution , 1996, Robotica.

[222]  Isao Shimoyama,et al.  Microrobot actuated by a vibration energy field , 1994 .

[223]  Hiroyuki Fujita,et al.  A micromachined impact microactuator driven by electrostatic force , 2003 .

[224]  Steven Devos Development of Fast, Stiff and High-Resolution Piezoelectric Motors with Integrated Bearing-Driving Functionality (Ontwikkeling van snelle en stijve piëzoelektrische motoren met een hoge resolutie en een geïntegreerde lagering-aandrijvingsfunctie) , 2006 .

[225]  William C. Tang,et al.  Electrostatic-comb drive of lateral polysilicon resonators , 1990 .

[226]  Dominiek Reynaerts,et al.  A piezo-electrical travelling wave XY-stage , 2002 .

[227]  Christophe Groux,et al.  Dispositif de plusieurs micros robots mobiles contrôlés par un projecteur , 2007 .

[228]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[229]  Kazuhiro Kosuge,et al.  Approach to distributed micro robotic system. Development of micro line trace robot and autonomous micro robotic system , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[230]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[231]  S.F. Jatsun,et al.  Automatically controlled vibration-driven robots , 2006, 2006 IEEE International Conference on Mechatronics.

[232]  Maurice Bétemps,et al.  Micro robots dedicated to small diameter canalization exploration , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[233]  Nozomu Mishima,et al.  Microfactory—Concept, History, and Developments , 2004 .

[234]  Yoshihiro Nomura,et al.  Development of inertia driven micro robot with nano tilting stage for SEM operation , 2007 .

[235]  N. Kawahara,et al.  Multi-source power supply system using micro-photovoltaic devices combined with microwave antenna , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[236]  Reymond Clavel,et al.  Micro-robot mobile à 3ddl basé sur le principe des actionneurs ultrasoniques , 2006 .

[237]  M. Puig-Vidal,et al.  Smart Power Integrated Circuit for a Piezoelectric Miniature Robot , 2002 .

[238]  Rajesh Rajamani,et al.  A novel dual-axis electrostatic microactuation system for micromanipulation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[239]  Makoto Nokata,et al.  Biomedical micro robots driven by miniature cybernetic actuator , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[240]  Stefan Johansson,et al.  Miniature piezoceramic locomotion unit with resonant drive , 2008 .

[241]  H. Fujita,et al.  Bidirectional electrostatic linear shuffle motor with two degrees of freedom , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[242]  Jörg Seyfried,et al.  Flexible microrobots for micro assembly tasks , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).

[243]  K. Tani Friction models for a mobile machine using piezo vibration , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.

[244]  N. Setter,et al.  Piezoelectric materials in devices , 2002 .

[245]  Peter U. Frei An intelligent vibratory conveyor for the individual object transportation in two dimensions , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[246]  Eray S. Aydil,et al.  Etching of high aspect ratio structures in Si using SF6/O2 plasma , 2004 .

[247]  Paolo Dario,et al.  Teleoperated assembly of a micro‐lens system by means of a micro‐manipulation workstation , 2007 .

[248]  Satoshi Konishi,et al.  Compact and precise positioner based on the Inchworm principle , 2000 .

[249]  B L Davies,et al.  Locomotion and steering aspects in automation of colonoscopy. Part one.A literature review. , 1997, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[250]  Michal Kelemen,et al.  In-pipe bristled micromachine , 2002, 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No.02TH8623).

[251]  H. Fujita,et al.  The measurements of friction on micromechatronics elements , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[252]  Roland Siegwart,et al.  Mobile micro-robots ready to use: Alice , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[253]  Sergej Fatikow,et al.  A Flexible Microrobot-Based Microassembly Station , 2000, J. Intell. Robotic Syst..

[254]  Jan Peirs,et al.  Design of micromechatronic systems: scale laws, technologies, and medical applications , 2001 .

[255]  James M. Conrad Stiquito for robotics and embedded systems education , 2005, Computer.

[256]  Massood Tabib-Azar,et al.  Microactuators: Electrical, Magnetic, Thermal, Optical, Mechanical, Chemical & Smart Structures , 1997 .

[257]  Guozheng Yan,et al.  Micro-Robot for Endoscope Based on Wireless Power Transfer , 2007, 2007 International Conference on Mechatronics and Automation.

[258]  Sergej Fatikow,et al.  Autonomous Microrobots , 1997, J. Intell. Robotic Syst..

[259]  Toshiiku Sashida,et al.  An Introduction to Ultrasonic Motors , 1994 .

[260]  Nicolas Chaillet,et al.  Microfabricated thermally actuated microrobot , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[261]  Robert J. Wood,et al.  Towards a 3g crawling robot through the integration of microrobot technologies , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[262]  Don L. DeVoe,et al.  Large-force electrothermal linear micromotors , 2004 .

[263]  Sylvain Martel,et al.  Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system , 2006, IEEE Transactions on Biomedical Engineering.

[264]  Gary P. Maul,et al.  Piezo actuated vibratory feeding with vibration control , 2007 .

[265]  Lining Sun,et al.  Design and Control Structure of a Miniature Robot for Micro Operation Task , 2006, 2006 IEEE Conference on Robotics, Automation and Mechatronics.

[266]  Jean-Marc Breguet,et al.  Solar Cell Powering with Integrated Global Positioning System for mm3 Size Robots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[267]  R. Matsuda,et al.  Micro-step XY-stage using piezoelectric tube actuator , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[268]  Arthur G. Erdman,et al.  Silicon fabricated submicrometer stepper motor for microsurgical procedures , 2002 .

[269]  R. Feynman There’s plenty of room at the bottom , 2011 .

[270]  Ulrich Rembold,et al.  Actuation in microsystems: problem field overview and practical example of the piezoelectric robot for handling of microobjects , 1995, Proceedings 1995 INRIA/IEEE Symposium on Emerging Technologies and Factory Automation. ETFA'95.

[271]  Kazuhiro Hane,et al.  A microtranslation table with scratch-drive actuators fabricated from silicon-on-insulator wafer , 2006 .

[272]  A. Torii,et al.  Miniature robots with three degrees of freedom , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).

[273]  Micromachined Traveling Wave Motors: Three Dimensional Mechanical Optimization and Miniaturization Limits Evaluation , 1997 .

[274]  Kurosawa State-of-the-art surface acoustic wave linear motor and its future applications , 2000, Ultrasonics.

[275]  Sounkalo Dembélé,et al.  A three DOF linear ultrasonic motor for transport and micropositioning , 2006 .

[276]  A. Arbat,et al.  Integrated Electronics for a 1cm3 Robot for Micro and Nanomanipulation Applications: MiCRoN , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[277]  K. Spanner,et al.  Survey of the Various Operating Principles of Ultrasonic Piezomotors , 2006 .

[278]  Christophe Ballif,et al.  Micro Photovoltaic Modules for Micro Systems , 2008 .

[279]  Kristofer S. J. Pister,et al.  Design of an Autonomous Jumping Microrobot , 2022 .

[280]  Sergej Fatikow,et al.  Development of a microrobot-based micromanipulation cell in a scanning electron microscope (SEM) , 2000, SPIE Optics East.

[281]  C F Andren,et al.  The skin tunnel transformer. A new system that permits both high efficiency transfer of power and telemetry of data through the intact skin. , 1968, IEEE transactions on bio-medical engineering.

[282]  Satoshi Tadokoro,et al.  Development of an Active Flexible Cable by Ciliary Vibration Drive for Scope Camera , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[283]  Kristofer S. J. Pister,et al.  Surface-micromachined components for articulated microrobots , 1996 .

[284]  Christophe Groux,et al.  Actionneur linéaire basé sur le principe du « Inchworm » inertiel , 2006 .

[285]  I. Shimoyama,et al.  Creation of an insect-based microrobot with an external skeleton and elastic joints , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[286]  T Hayashi Research and development of micromechanisms. , 2000, Ultrasonics.

[287]  Dominiek Reynaerts,et al.  Design and construction of a linear piezo-electrically driven forced travelling wave motor , 2000 .