Exploring Fine-Grained Emotion Detection in Tweets

We examine if common machine learning techniques known to perform well in coarsegrained emotion and sentiment classification can also be applied successfully on a set of fine-grained emotion categories. We first describe the grounded theory approach used to develop a corpus of 5,553 tweets manually annotated with 28 emotion categories. From our preliminary experiments, we have identified two machine learning algorithms that perform well in this emotion classification task and demonstrated that it is feasible to train classifiers to detect 28 emotion categories without a huge drop in performance compared to coarser-grained classification schemes.

[1]  Sanda M. Harabagiu,et al.  EmpaTweet: Annotating and Detecting Emotions on Twitter , 2012, LREC.

[2]  Stan Szpakowicz,et al.  Identifying Expressions of Emotion in Text , 2007, TSD.

[3]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[4]  Amit P. Sheth,et al.  Harnessing Twitter "Big Data" for Automatic Emotion Identification , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[5]  Jacob Eisenstein,et al.  What to do about bad language on the internet , 2013, NAACL.

[6]  Franco Salvetti,et al.  Opinion Polarity Identification of Movie Reviews , 2006, Computing Attitude and Affect in Text.

[7]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[8]  François-Régis Chaumartin,et al.  UPAR7: A knowledge-based system for headline sentiment tagging , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[9]  Cecilia Ovesdotter Alm,et al.  Emotions from Text: Machine Learning for Text-based Emotion Prediction , 2005, HLT.

[10]  William M. Pottenger,et al.  Classification of Emotions in Internet Chat: An Application of Machine Learning Using Speech Phonemes , 2003 .

[11]  Li Wang,et al.  How Noisy Social Media Text, How Diffrnt Social Media Sources? , 2013, IJCNLP.

[12]  P. Shaver,et al.  Emotion knowledge: further exploration of a prototype approach. , 1987, Journal of personality and social psychology.

[13]  J. Russell Core affect and the psychological construction of emotion. , 2003, Psychological review.

[14]  Hongfei Fan,et al.  Computer Supported Cooperative Work and Social Computing , 2018, Communications in Computer and Information Science.

[15]  Colin Cherry,et al.  Binary Classifiers and Latent Sequence Models for Emotion Detection in Suicide Notes , 2012, Biomedical informatics insights.

[16]  Taylor Jackson Scott,et al.  Statistical affect detection in collaborative chat , 2013, CSCW.

[17]  Patrick Paroubek,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2010, LREC.

[18]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[19]  Joel D. Martin,et al.  Semantic Role Labeling of Emotions in Tweets , 2014, WASSA@ACL.

[20]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[21]  Manabu Torii,et al.  A Hybrid Approach to Sentiment Sentence Classification in Suicide Notes , 2012, Biomedical informatics insights.

[22]  R. Plutchik The emotions: Facts, theories and a new model. , 1964 .

[23]  Carlo Strapparava,et al.  Learning to identify emotions in text , 2008, SAC '08.

[24]  Ping Zhang,et al.  The Affective Response Model: A Theoretical Framework of Affective Concepts and Their Relationships in the ICT Context , 2013, MIS Q..

[25]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[26]  R. Bouckaert Bayesian belief networks : from construction to inference , 1995 .

[27]  Stan Szpakowicz,et al.  Using Roget’s Thesaurus for Fine-grained Emotion Recognition , 2008, IJCNLP.

[28]  Elke A. Rundensteiner,et al.  Using Hashtags as Labels for Supervised Learning of Emotions in Twitter Messages , 2014 .

[29]  Saif Mohammad,et al.  Using Hashtags to Capture Fine Emotion Categories from Tweets , 2015, Comput. Intell..

[30]  Elke A. Rundensteiner,et al.  EMOTEX: Detecting Emotions in Twitter Messages , 2014 .

[31]  Saif Mohammad,et al.  #Emotional Tweets , 2012, *SEMEVAL.

[32]  Preslav Nakov,et al.  SemEval-2014 Task 9: Sentiment Analysis in Twitter , 2014, *SEMEVAL.

[33]  A. Strauss,et al.  The discovery of grounded theory: strategies for qualitative research aldine de gruyter , 1968 .