Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less

We present high-precision measurements of the Nusselt number $\cal N$ as a function of the Rayleigh number $R$ for cylindrical samples of water (Prandtl number $\sigma \,{=}\, 4.4$) with a diameter $D$ of 49.7 cm and heights $L \,{=}\, 116.3, 74.6$, and 50.6 cm, as well as for $D \,{=}\, 24.8$ cm and $L \,{=}\, 90.2$ cm. For each aspect ratio $\Gamma \,{\equiv}\, D/L \,{=}\, 0.28, 0.43, 0.67$, and 0.98 the data cover a range of a little over a decade of $R$. The maximum $R \,{\simeq}\, 10^{12}$ and Nusselt number ${\cal N} \,{\simeq}\, 600$ were reached for $\Gamma \,{=}\, 0.43$ and $D \,{=}\, 49.7$. The data were corrected for the influence of the finite conductivity of the top and bottom plates on the heat transport in the fluid to obtain estimates of $\cal N_{\infty}$ for plates with infinite conductivity. The results for ${\cal N}_{\infty}$ and $\Gamma \,{\geq}\, 0.43$ are nearly independent of $\Gamma$. For $\Gamma \,{=}\, 0.275$ ${\cal N}_{\infty}$ falls about 2.5% below the other data. For $R \,{\lesssim}\,10^{11}$, the effective exponent $\gamma_{\hbox{\scriptsize\it eff}}$ of ${\cal N}_{\infty} \,{=}\, N_0 R^{\gamma_{\hbox{\scriptsize\it eff}}}$ is about 0.32, larger than those of the Grossmann–Lohse model with its current parameters by about 0.01. For the largest Rayleigh numbers covered for $\Gamma \,{=}\, $0.98, 0.67, and 0.43, $\gamma_{\hbox{\scriptsize\it eff}}$ saturates at the asymptotic value $\gamma \,{=}\, 1/3$ of the Grossmann–Lohse model. The data do not reveal any crossover to a Kraichnan regime with $\gamma_{\hbox{\scriptsize\it eff}} \,{>}\, 1/3$.

[1]  B. Castaing,et al.  Long relaxation times and tilt sensitivity in Rayleigh Bénard turbulence , 2004 .

[2]  Eric Brown,et al.  Heat transport in turbulent Rayleigh-Bénard convection: Effect of finite top- and bottom-plate conductivities , 2005 .

[3]  Leo P. Kadanoff,et al.  Turbulent heat flow: Structures and scaling , 2001 .

[4]  Libchaber,et al.  Scaling relations in thermal turbulence: The aspect-ratio dependence. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  F. Chillà,et al.  Turbulent Rayleigh–Bénard convection in gaseous and liquid He , 2001 .

[6]  Roberto Verzicco,et al.  Sidewall finite-conductivity effects in confined turbulent thermal convection , 2002, Journal of Fluid Mechanics.

[7]  Detlef Lohse,et al.  Scaling in thermal convection: a unifying theory , 2000, Journal of Fluid Mechanics.

[8]  X. Shang,et al.  Measured local heat transport in turbulent Rayleigh-Bénard convection. , 2003, Physical review letters.

[9]  K. R. Sreenivasan,et al.  Turbulent convection at very high Rayleigh numbers , 1999, Nature.

[10]  L. Howard,et al.  Large-scale flow generation in turbulent convection. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Lohse,et al.  Thermal convection for large Prandtl numbers. , 2000, Physical review letters.

[12]  D. Lohse,et al.  On geometry effects in Rayleigh–Bénard convection , 2002, Journal of Fluid Mechanics.

[13]  Bajaj,et al.  Heat transport in turbulent rayleigh-Benard convection , 2000, Physical review letters.

[14]  S. Tokuda,et al.  Heat transfer by thermal convection at high rayleigh numbers , 1980 .

[15]  D. Lohse,et al.  Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  R. Kraichnan Turbulent Thermal Convection at Arbitrary Prandtl Number , 1962 .

[17]  S. Grossmann Scaling in thermal convection: A unifying view , 2022 .

[18]  B. Castaing,et al.  Side wall effects in Rayleigh Bénard experiments , 2001 .

[19]  R. Ecke,et al.  Heat Transport Scaling in Turbulent Rayleigh-Bénard Convection: Effects of Rotation and Prandtl Number , 1997 .

[20]  G. Ahlers,et al.  Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection. , 2001, Physical review letters.

[21]  Roberto Verzicco,et al.  Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell , 2003, Journal of Fluid Mechanics.

[22]  G. Ahlers,et al.  Nusselt number measurements for turbulent Rayleigh-Bénard convection. , 2003, Physical review letters.

[23]  R. Verzicco Effects of nonperfect thermal sources in turbulent thermal convection , 2004 .

[24]  J. Hart,et al.  High Rayleigh number β-convection , 1993 .

[25]  S. Grossmann,et al.  Hochpräzision im Kochtopf: Neues zur turbulenten Konvektion , 2002 .

[26]  D. Lohse,et al.  Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes , 2004 .

[27]  Heat Transfer in Turbulent Rayleigh–Bénard Convection Below the Ultimate Regime , 2003, cond-mat/0307518.

[28]  J. Niemela,et al.  Confined turbulent convection , 2002, Journal of Fluid Mechanics.

[29]  G. Ahlers,et al.  Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.