Integration of a magnetocaloric heat pump in an energy flexible residential building

[1]  A. Poredos,et al.  Numerical modelling and experimental validation of a regenerative electrocaloric cooler , 2019, International Journal of Refrigeration.

[2]  P. Heiselberg,et al.  Influence of envelope, structural thermal mass and indoor content on the building heating energy flexibility , 2019, Energy and Buildings.

[3]  Jianlin Yu,et al.  Variable load control strategy for room-temperature magnetocaloric cooling applications , 2018, Energy.

[4]  S. Russek,et al.  The evolution of magnetocaloric heat-pump devices , 2018 .

[5]  K. Engelbrecht,et al.  Integration of a magnetocaloric heat pump in a low-energy residential building , 2018 .

[6]  K. K. Nielsen,et al.  Passive characterization and active testing of epoxy bonded regenerators for room temperature magnetic refrigeration , 2018 .

[7]  K. Engelbrecht,et al.  The effect of tapering on a magnetocaloric regenerator bed , 2017 .

[8]  David Fischer,et al.  On heat pumps in smart grids: A review , 2017 .

[9]  Kaspar Kirstein Nielsen,et al.  Study of geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration , 2017 .

[10]  Anna Joanna Marszal,et al.  IEA EBC Annex 67 Energy Flexible Buildings , 2017 .

[11]  Per Heiselberg,et al.  Energy flexibility of residential buildings using short term heat storage in the thermal mass , 2016 .

[12]  Nini Pryds,et al.  A regenerative elastocaloric heat pump , 2016, Nature Energy.

[13]  Kurt Engelbrecht,et al.  Exploring the efficiency potential for an active magnetic regenerator , 2016 .

[14]  J. Cui,et al.  A review of elastocaloric cooling: materials, cycles and system integrations. , 2016 .

[15]  Ciro Aprea,et al.  The energy performances of a rotary permanent magnet magnetic refrigerator , 2016 .

[16]  Hicham Johra,et al.  Description and Validation of a MATLAB: Simulink Single Family House Energy Model with Furniture and Phase Change Materials , 2016 .

[17]  Ciro Aprea,et al.  GeoThermag: A geothermal magnetic refrigerator , 2015 .

[18]  Kurt Engelbrecht,et al.  Development of a novel rotary magnetic refrigerator. , 2015 .

[19]  Lars Pilgaard Mikkelsen,et al.  The Elastocaloric Effect: A Way to Cool Efficiently , 2015 .

[20]  Brian Vad Mathiesen,et al.  Smart Energy Systems for coherent 100% renewable energy and transport solutions , 2015 .

[21]  Andrej Kitanovski,et al.  Magnetocaloric Energy Conversion: From Theory to Applications , 2015 .

[22]  Carlo Roselli,et al.  Calibration and validation of a thermal energy storage model: Influence on simulation results , 2014 .

[23]  Hans-Martin Henning,et al.  A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology , 2014 .

[24]  S. Russek,et al.  The performance of a large-scale rotary magnetic refrigerator , 2014 .

[25]  Kim Bjarne Wittchen,et al.  - Reference Climate Dataset for Technical Dimensioning in Building, Construction and other Sectors , 2013 .

[26]  N. Hirano,et al.  Improvement of the Performance of Room Temperature Magnetic Refrigerator using Gd-alloy , 2013 .

[27]  Marc A. Rosen,et al.  Geothermal heat pump systems: Status review and comparison with other heating options , 2013 .

[28]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[29]  Brian Vad Mathiesen,et al.  Wind power integration using individual heat pumps – Analysis of different heat storage options , 2012 .

[30]  Kaspar Kirstein Nielsen,et al.  Experimental results for a novel rotary active magnetic regenerator , 2012 .

[31]  Wolfram Rühaak,et al.  Finite element modeling of borehole heat exchanger systems: Part 1. Fundamentals , 2011, Comput. Geosci..

[32]  Ole Daniels,et al.  Person- og forbrugsprofiler: bygningsintegreret energiforsyning , 2011 .

[33]  K. Engelbrecht,et al.  Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance , 2010 .

[34]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[35]  Brian Vad Mathiesen,et al.  The role of district heating in future renewable energy systems , 2010 .

[36]  Bjarne W. Olesen,et al.  DEVELOPMENT AND VALIDATION OF A VERSATILE METHOD FOR THE CALCULATION OF HEAT TRANSFER IN WATER-BASED RADIANT SYSTEMS , 2009 .

[37]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[38]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[39]  P. Li,et al.  A practical model for analysis of active magnetic regenerative refrigerators for room temperature applications. , 2006 .

[40]  Nick Kelly,et al.  A comparative assessment of future heat and power sources for the UK domestic sector , 2006 .

[41]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[42]  V. C. Mei,et al.  Thermodynamic Analysis of Four Magnetic Heat-Pump Cycles , 1992 .

[43]  Standard Ashrae Thermal Environmental Conditions for Human Occupancy , 1992 .

[44]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[45]  W. Giauque,et al.  The Production of Temperatures below One Degree Absolute by Adiabatic Demagnetization of Gadolinium Sulfate , 1935 .

[46]  W. Giauque A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .

[47]  P. Debye Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .

[48]  P. Weiss,et al.  Aimantation et phénomène magnétocalorique du nickel , 1925 .