Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains

An approach for probing dynamic phenomena during hysteresis loop measurements in piezoresponse force microscopy (PFM) is developed. Dynamic PFM (D-PFM) necessitates development of 5-dimensional (5D) data acquisition protocols and associated methods for analysis and visualization of multidimensional data. Using a combination of multivariate statistical analysis and phenomenological fitting, we explore dynamic behavior during polarization switching in model ferroelectric films with dense ferroelastic domain structures and in ferroelectric capacitors. In polydomain films, multivariate analysis of the switching data suggests that ferroelectric and ferroelastic components can be decoupled and time dynamics can be explored. In capacitors, a strong correlation between polarization dynamics and microstructure is observed. The future potential of D-PFM for probing time-dependent hysteretic phenomena in ferroelectrics and ionic systems is discussed.

[1]  Y. Eugene Pak,et al.  Principle of ferroelectric domain imaging using atomic force microscope , 2001 .

[2]  Sergei V. Kalinin,et al.  Local probing of relaxation time distributions in ferroelectric polymer nanomesas: Time-resolved piezoresponse force spectroscopy and spectroscopic imaging , 2008 .

[3]  Sergei V. Kalinin,et al.  Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors , 2022 .

[4]  I. Mayergoyz,et al.  Generalized Preisach model of hysteresis , 1988 .

[5]  Jun Hatano,et al.  Scanning force microscopy as a tool for nanoscale study of ferroelectric domains , 1996 .

[6]  V. Fridkin,et al.  Polarization switching at the nanoscale in ferroelectric copolymer thin films , 2011 .

[7]  Stephen Jesse,et al.  Quantitative mapping of switching behavior in piezoresponse force microscopy , 2006 .

[8]  Sergei V. Kalinin,et al.  Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. , 2008, Nature Materials.

[9]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[10]  A. Gruverman,et al.  Switching properties of self-assembled ferroelectric memory cells , 1999 .

[11]  B. E. Vugmeister,et al.  Polarization dynamics and formation of polar nanoregions in relaxor ferroelectrics , 2006 .

[12]  Peter Maksymovych,et al.  Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics , 2008 .

[13]  K. No,et al.  Formation of ferroelectric nano-domains using scanning force microscopy for the future application of memory devices , 2000 .

[14]  Stephen Jesse,et al.  Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezorespon , 2010 .

[15]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[16]  H. Christenson Confinement effects on freezing and melting , 2001 .

[17]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[18]  Paul Muralt,et al.  High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitors , 1999 .

[19]  H. Gaub,et al.  Force spectroscopy with single bio-molecules. , 2000, Current opinion in chemical biology.

[20]  Nazanin Bassiri-Gharb,et al.  Domain wall contributions to the properties of piezoelectric thin films , 2007 .

[21]  Sergei V. Kalinin,et al.  Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future , 2009 .

[22]  Stephen Jesse,et al.  Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films , 2010 .

[23]  M. Minakata,et al.  Observation of Piezoelectric Relaxation in Ferroelectric Thin Films by Continuous Charge Integration , 2001 .

[24]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoresponse force microscopy , 2004, cond-mat/0408223.

[25]  J. M. Deutsch,et al.  Disorder-induced microscopic magnetic memory. , 2004, Physical review letters.

[26]  Alexandra Imre,et al.  Effects of cantilever buckling on vector piezoresponse force microscopy imaging of ferroelectric domains in BiFeO3 nanostructures , 2010 .

[27]  Nava Setter,et al.  Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes , 1998 .

[28]  Stephen Jesse,et al.  Band excitation in scanning probe microscopy: sines of change , 2011 .

[29]  Anna N. Morozovska,et al.  Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions , 2010 .

[30]  Stephen Jesse,et al.  Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. , 2010, Nano letters.

[31]  K. No,et al.  Effect of cantilever–sample interaction on piezoelectric force microscopy , 2002 .

[32]  E. Dahlberg,et al.  A Preisach model with a temperature and time-dependent remanence maximum , 1997 .

[33]  Amit Kumar,et al.  Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy , 2011 .

[34]  S. Jesse,et al.  A decade of piezoresponse force microscopy: progress, challenges, and opportunities , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  M. Tyunina,et al.  Local Electromechanical Properties of PbMg1/3Nb2/3O3 Thin Films Studied by Piezoelectric Force Microscopy , 2004 .

[36]  Sergei V. Kalinin,et al.  Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response , 2009, Nanotechnology.

[37]  F. Bai,et al.  Polarization switching in (001)-oriented Pb(Mg1∕3Nb2∕3)O3−x%PbTiO3 crystals: Direct observation of heterogeneous nucleation by piezoreponse force microscopy , 2004 .

[38]  E. Dahlberg,et al.  Modelling the irreversible response of magnetically ordered materials: a Preisach-based approach , 2001 .

[39]  K. No,et al.  Effect of local surface potential distribution on its relaxation in polycrystalline ferroelectric films , 2010 .

[40]  V. Fridkin,et al.  Polarization switching kinetics of ferroelectric nanomesas of vinylidene fluoride-trifluoroethylene copolymer , 2009 .

[41]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[42]  V. Shvartsman,et al.  Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals , 2007 .

[43]  U. Böttger,et al.  Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy , 2000 .

[44]  A. Ikai,et al.  MAPPING CELL WALL POLYSACCHARIDES OF LIVING MICROBIAL CELLS USING ATOMIC FORCE MICROSCOPY , 1997, Cell biology international.

[45]  Dragan Damjanovic,et al.  Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics , 2001 .

[46]  V. Shvartsman,et al.  Piezoelectric nonlinearity of Pb(Zr,Ti)O3 thin films probed by scanning force microscopy , 2002 .

[47]  E. Soergel Piezoresponse force microscopy (PFM) , 2011 .

[48]  Anna N. Morozovska,et al.  Surface Domain Structures and Mesoscopic Phase Transition in Relaxor Ferroelectrics , 2011 .

[49]  C. Böttcher,et al.  On the notion of dielectric friction in the theory of dielectric relaxation , 1974 .

[50]  Sergei V. Kalinin,et al.  Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale , 2009 .

[51]  K. Yao,et al.  Polarization switching in quasiplanar BiFeO3 capacitors , 2010 .

[52]  S. El-Borgi,et al.  Flexoelectric properties of ferroelectrics and the nanoindentation size-effect , 2011 .

[53]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[54]  Sergei V. Kalinin,et al.  Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase , 2009 .

[55]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[56]  Amit Kumar,et al.  Real-space mapping of dynamic phenomena during hysteresis loop measurements: Dynamic switching spectroscopy piezoresponse force microscopy , 2011 .

[57]  Abhishek Bhattacharyya,et al.  Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite , 2009 .

[58]  E. Williams,et al.  Domain nucleation and relaxation kinetics in ferroelectric thin films , 2000 .

[59]  Claus Daniel,et al.  Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution , 2011 .

[60]  Amit Kumar,et al.  Measuring oxygen reduction/evolution reactions on the nanoscale. , 2011, Nature chemistry.

[61]  K. No,et al.  Quantitative analysis of the bit size dependence on the pulse width and pulse voltage in ferroelectric memory devices using atomic force microscopy , 2001 .

[62]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[63]  Sergei V. Kalinin,et al.  Local polarization dynamics in ferroelectric materials , 2010 .

[64]  H. Lang,et al.  How the doors to the nanoworld were opened , 2006, Nature nanotechnology.

[65]  Igor Levin,et al.  Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3-CoFe2O4 epitaxial films , 2008 .

[66]  Hiroshi Tokumoto,et al.  Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy , 1998 .

[67]  S Jesse,et al.  Spatially resolved spectroscopic mapping of polarization reversal in polycrystalline ferroelectric films: crossing the resolution barrier. , 2009, Physical review letters.

[68]  K. Binder,et al.  Dynamics of multilayer adsorption: a Monte Carlo simulation , 1992 .

[69]  Robert A. Huggins,et al.  Electrochemical Methods for Determining Kinetic Properties of Solids , 1978 .

[70]  D. Alexander,et al.  Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. , 2006, Ultramicroscopy.

[71]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials , 2005 .

[72]  Stephen Jesse,et al.  Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy , 2009, Nanotechnology.

[73]  V. Shvartsman,et al.  Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O3-4.5%PbTIO3 single crystals , 2003 .

[74]  Dragan Damjanovic,et al.  STRESS AND FREQUENCY DEPENDENCE OF THE DIRECT PIEZOELECTRIC EFFECT IN FERROELECTRIC CERAMICS , 1997 .

[75]  D. Hall Review Nonlinearity in piezoelectric ceramics , 2001 .

[76]  J. Ouyang,et al.  Formation of 90° elastic domains during local 180° switching in epitaxial ferroelectric thin films , 2004 .

[77]  Current imaging tunneling spectroscopy of metallic deposits on silicon , 1992 .

[78]  S. Trolier-McKinstry,et al.  Piezoelectric nonlinearity in ferroelectric thin films , 2006 .

[79]  S. Kalinin,et al.  Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms , 2010 .

[80]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[81]  M. Tyunina,et al.  Relaxation of induced polar state in relaxor PbMg1∕3Nb2∕3O3 thin films studied by piezoresponse force microscopy , 2005 .

[82]  Rosalía Poyato,et al.  Stress-induced suppression of piezoelectric properties in PbTiO3:La thin films via scanning force microscopy , 2003 .

[83]  A. Gruverman,et al.  Scanning force microscopy of domain structure in ferroelectric thin films: Imaging and control , 1997 .

[84]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[85]  Stephen Jesse,et al.  Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics , 2008 .

[86]  Sergei V. Kalinin,et al.  Imaging mechanism of piezoresponse force microscopy in capacitor structures , 2008, 0801.2568.

[87]  H. Katzgraber,et al.  Disorder-induced magnetic memory: Experiments and theories , 2006, cond-mat/0611542.

[88]  K. No,et al.  SURFACE POTENTIAL RELAXATION OF FERROELECTRIC DOMAIN INVESTIGATED BY KELVIN PROBE FORCE MICROSCOPY , 2006 .

[89]  Sergei V. Kalinin,et al.  Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy , 2010, Nanotechnology.

[90]  T. Kanashima,et al.  Synergistic information encoding by combinatorial pulse operation of ferroelectrics , 2009 .

[91]  A. Jonscher A new understanding of the dielectric relaxation of solids , 1981 .

[92]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[93]  R. Waser,et al.  Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains , 2002 .

[94]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures , 2009 .

[95]  Anna N. Morozovska,et al.  Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects , 2007 .

[96]  Amit Kumar,et al.  Spatially Resolved Mapping of Disorder Type and Distribution in Random Systems using Artificial Neural Network Recognition , 2011 .

[97]  E. Williams,et al.  Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films , 2001 .

[98]  Dragan Damjanovic LOGARITHMIC FREQUENCY DEPENDENCE OF THE PIEZOELECTRIC EFFECT DUE TO PINNING OF FERROELECTRIC-FERROELASTIC DOMAIN WALLS , 1997 .

[99]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[100]  N. Bonnet,et al.  Multivariate statistical methods for the analysis of microscope image series: applications in materials science , 1998 .

[101]  Andrew P. Roberts,et al.  First‐order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples , 2000 .

[102]  P. Günter,et al.  Ferroelectric domain switching in tri-glycine sulphate and barium-titanate bulk single crystals by scanning force microscopy , 1998 .

[103]  E. A. Eliseev,et al.  Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3films , 2011 .

[104]  A. Neimark,et al.  Experimental Confirmation of Different Mechanisms of Evaporation from Ink-Bottle Type Pores: Equilibrium, Pore Blocking, and Cavitation , 2002 .

[105]  A. Ogale,et al.  Role of 90° domains in lead zirconate titanate thin films , 2000 .