Branching of solutions of an equation in Hilbert space
暂无分享,去创建一个
[1] A. Feinstein,et al. Variational Methods for the Study of Nonlinear Operators , 1966 .
[2] J. Cronin. Branch points of solutions of equations in Banach space. II , 1950 .
[3] Melvyn S. Berger. On nonlinear perturbations of the eigenvalues of a compact self-adjoint operator , 1967 .
[4] G. Knightly,et al. On nonuniqueness of solutions of the von Kármán equations , 1970 .
[5] M. M. Vaĭnberg,et al. THE METHODS OF LYAPUNOV AND SCHMIDT IN THE THEORY OF NON-LINEAR EQUATIONS AND THEIR FURTHER DEVELOPMENT , 1962 .
[6] etc. Krasnosel'skiy. Plane Vector Fields , 1966 .
[7] R. Bartle. Singular points of functional equations , 1953 .
[8] T. H. Hildebrandt,et al. Implicit functions and their differentials in general analysis , 1927 .
[9] E. Schmidt,et al. Zur Theorie der linearen und nichtlinearen Integralgleichungen. III. Teil , 1908 .
[10] L. Graves. Remarks on singular points of functional equations , 1955 .
[11] Melvyn S. Berger,et al. On von kármán's equations and the buckling of a thin elastic plate, I the clamped plate , 1967 .
[12] J. Cronin. A Definition of Degree for Certain Mappings in Hilbert Space , 1951 .
[13] M. A. Krasnoselʹskii. Topological methods in the theory of nonlinear integral equations , 1968 .
[14] E. Rothe. Completely Continuous Scalars and Variational Methods , 1948 .
[15] Friedrich Riesz. Über lineare Funktionalgleichungen , 1916 .